开关电源电路拓扑结构的选择

开关电源电路拓扑结构的选择

开关电源(直流变换器)的类型很多,从输入输出有无隔离角度,开关电源主回路可以分为隔离式与非隔离式两大类型。这两种类型中又各自包含有不同的电路拓扑种类。每种结构都有各自的特点,适用于不同的应用场合,下边将对各种开关电源拓扑结构简要叙述和比较。 1. 非隔离式开关电源拓扑结构

非隔离式电路是指输入端与输出端电气相通,没有隔离。非隔离式又可分串联式结构、并联式结构和极性反转式结构三种电路拓扑结构,这三种电路拓扑结构有各自的特点,工作过程不一样,应用场合也不一样。 (1)串联式结构特点和工作原理

图3所示为串联式结构,这种结构的特点是:在主回路中开关器件T与输入端、输出端、电感器L、负载RL四者成串联连接的关系。开关管T交替工作于导通/关断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载RL继续供电,从而保证了负载端获得。

图3 串联式开关稳压电路主回路

串联式结构中,输出电压与输入电压成线性关系,其表达式为Vo≈Vi×D,D为开关器件T的占空比,D越大输出越大,其最大值为1,因此串联式结构只能获得低于输入电压的输出电压,只适合于降压式变换。 (2)并联式结构特点和工作原理

图4所示为并联式结构,并联式结构与串联式结构有相同的组成部分,只是他们的位置被重新布置了一下。这种结构的特点是:在主回路中开关器件T与输出端负载成并联连接的关系。开关管T交替工作于导通/关断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载RL供电,并同时对电容器C充电。

图4并联式开关稳压电路主回路

由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换,适合于输出电压高于输入电压的场合,并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。 (3)极性反转型变换器结构

图5所示为极性反转变换器结构,输出电压与输入电压的极性相反。电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。

图5极性反转开关电源主回路

开关管T交替工作于导通/关断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。

2 .隔离式开关电源拓扑结构

隔离式是指输入端与输出端电气不相通,通过脉冲变压器的磁耦合方式传递能量,输入输出完全电气隔离。隔离式又可分为以下几种拓扑结构: (1)单端反激式

开关电源电路中所谓的单端是指变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激是指当功率调整管T导通时,变压器N在初级绕组中储存能量;当功率调整管T截止时,变压器N通过次级绕组向负载传递能量。即原/副边交错通断。

这样可以避免变压器磁能被积累的问题,但是由于变压器存在漏感,将在原边形成电压尖峰,可能击穿调整管T,因此需要设置RCD缓冲电路。

图6单端反激式开关电源主回路 (2)单端正激式

从电路原理图上看,正激式与反激式很相似,表面上只是变压器同名端的区别,但工作过程不同。当T导通时,变压器N的初级和次级绕组同时导通,向负载传送能量,滤波电感L储存能量;当T截止时,电感L通过二极管D1继续向负载释放能量。

图7单端正激式开关电源主回路

该电路的最大问题是:功率管T交替工作于通/断两种状态,当功率管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个

周期,直至电感器饱和,可能会使功率调整管烧 毁。 (3)推挽式

这种电路结构的特点是:变压器原边是两个对称线圈,两只功率调整管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

图8推挽式开关电源主回路

该电路的主要缺点是:电路结构相对复杂,成本较高,变压器绕组利用率低,对功率管的耐压要求比较高。 (4)半桥式

电路的结构类似于全桥式,只是把其中的两只调整管换成了两只等值的大电容C1、C2。工作过

程:T1和T2交替导通,使变压器一次侧形成幅值为Ui/2的交流电压,改变PWM的占空比就可以改变输 出电压。

图9半桥式开关电源主回路

(5)全桥式

这种电路结构的特点是:由四只相同的调整管接成电桥结构驱动变压器的原边。工作过程:互为对角的两个功率管同时导通,同一侧上的两功率管交替导通,使变压器一次侧形成幅值为Ui/2的交流电压,改变PWM占空比就可以改变输出电压。

图10全桥式开关电源主回路

该电路使用的功率管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。这种电路结构通常使用在1KW以上超大功率开关电源电路中。 3.开关电源各种拓扑结构的比较

开关电源电路拓扑结构的选择

开关电源(直流变换器)的类型很多,从输入输出有无隔离角度,开关电源主回路可以分为隔离式与非隔离式两大类型。这两种类型中又各自包含有不同的电路拓扑种类。每种结构都有各自的特点,适用于不同的应用场合,下边将对各种开关电源拓扑结构简要叙述和比较。 1. 非隔离式开关电源拓扑结构

非隔离式电路是指输入端与输出端电气相通,没有隔离。非隔离式又可分串联式结构、并联式结构和极性反转式结构三种电路拓扑结构,这三种电路拓扑结构有各自的特点,工作过程不一样,应用场合也不一样。 (1)串联式结构特点和工作原理

图3所示为串联式结构,这种结构的特点是:在主回路中开关器件T与输入端、输出端、电感器L、负载RL四者成串联连接的关系。开关管T交替工作于导通/关断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载RL继续供电,从而保证了负载端获得。

图3 串联式开关稳压电路主回路

串联式结构中,输出电压与输入电压成线性关系,其表达式为Vo≈Vi×D,D为开关器件T的占空比,D越大输出越大,其最大值为1,因此串联式结构只能获得低于输入电压的输出电压,只适合于降压式变换。 (2)并联式结构特点和工作原理

图4所示为并联式结构,并联式结构与串联式结构有相同的组成部分,只是他们的位置被重新布置了一下。这种结构的特点是:在主回路中开关器件T与输出端负载成并联连接的关系。开关管T交替工作于导通/关断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载RL供电,并同时对电容器C充电。

图4并联式开关稳压电路主回路

由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换,适合于输出电压高于输入电压的场合,并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。 (3)极性反转型变换器结构

图5所示为极性反转变换器结构,输出电压与输入电压的极性相反。电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。

图5极性反转开关电源主回路

开关管T交替工作于导通/关断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。

2 .隔离式开关电源拓扑结构

隔离式是指输入端与输出端电气不相通,通过脉冲变压器的磁耦合方式传递能量,输入输出完全电气隔离。隔离式又可分为以下几种拓扑结构: (1)单端反激式

开关电源电路中所谓的单端是指变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激是指当功率调整管T导通时,变压器N在初级绕组中储存能量;当功率调整管T截止时,变压器N通过次级绕组向负载传递能量。即原/副边交错通断。

这样可以避免变压器磁能被积累的问题,但是由于变压器存在漏感,将在原边形成电压尖峰,可能击穿调整管T,因此需要设置RCD缓冲电路。

图6单端反激式开关电源主回路 (2)单端正激式

从电路原理图上看,正激式与反激式很相似,表面上只是变压器同名端的区别,但工作过程不同。当T导通时,变压器N的初级和次级绕组同时导通,向负载传送能量,滤波电感L储存能量;当T截止时,电感L通过二极管D1继续向负载释放能量。

图7单端正激式开关电源主回路

该电路的最大问题是:功率管T交替工作于通/断两种状态,当功率管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个

周期,直至电感器饱和,可能会使功率调整管烧 毁。 (3)推挽式

这种电路结构的特点是:变压器原边是两个对称线圈,两只功率调整管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

图8推挽式开关电源主回路

该电路的主要缺点是:电路结构相对复杂,成本较高,变压器绕组利用率低,对功率管的耐压要求比较高。 (4)半桥式

电路的结构类似于全桥式,只是把其中的两只调整管换成了两只等值的大电容C1、C2。工作过

程:T1和T2交替导通,使变压器一次侧形成幅值为Ui/2的交流电压,改变PWM的占空比就可以改变输 出电压。

图9半桥式开关电源主回路

(5)全桥式

这种电路结构的特点是:由四只相同的调整管接成电桥结构驱动变压器的原边。工作过程:互为对角的两个功率管同时导通,同一侧上的两功率管交替导通,使变压器一次侧形成幅值为Ui/2的交流电压,改变PWM占空比就可以改变输出电压。

图10全桥式开关电源主回路

该电路使用的功率管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。这种电路结构通常使用在1KW以上超大功率开关电源电路中。 3.开关电源各种拓扑结构的比较


相关内容

  • 光伏逆变器拓扑结构及设计思路
  • 1 引言 对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的.但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的.因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显[1].欧洲效率的定 ...

  • 一种大功率可调开关电源的设计方案
  • 一种大功率可调开关电源的设计方案[图] http://www.c114.net ( 2012/3/29 13:21 ) 1.引言 开关电源作为线性稳压电源的一种替代物出现,其应用与实现日益成熟.而集成化技术使电子设备向小型化.智能化方向发展,新型电子设备要求开关电源有更小的体积和更低的噪声干扰,以便 ...

  • 并联型有源电力滤波器控制方法的研究
  • 第27卷第11期 2009年11月 文章编号:1004-3918(2009)11-1409-02河南科学HENANV01.27No.1lNOV.2009SCIENCE 基于DSP并联型有源电力滤波器的研究 杜超,李增生,郭红霞 (榆林学院,陕西榆林719000) 摘要:分析了与滞环相结合的空间矢量P ...

  • 负电压产生电路,ZLG给你细细道来
  • 摘要 随着电子技术的提高,以及电子产品的发展,一些系统中经常会需要负电压为其供电.例如,在大功率变频器,会使用负电压为IGBT提供关断负电压:另外,在系统的运算放大器中,也会使用正负对称的偏置电压为其供电. 负电压设计根据不同的负载电流有很多不同方案,以下是给出几种目前市面比较常见的负压方,可以根据 ...

  • 350W大小用于iPod的D类功放电路设计_电路图
  • 介绍 在以前的音频放大器时代,表现了效率,尺寸,从而降低成本的权衡.通过使用输出功率器件的开关状态,D类拓扑音频功率放大数字设备的演进带来的好处. 更精细的设备几何最新的硅技术可以降低功率损耗,同时提高开关速度.因此,新的D类技术使更少的热量,更好的音频性能,以便更好的放大器.为了展示这些优势,本文 ...

  • 推挽全桥双向直流变换器的研究
  • 推挽全桥双向直流变换器的研究 1 引言 随着环境污染的日益严重和新能源的开发,双向直流变换器得到了越来越广泛的应用,像直流不停电电源系统,航天电源系统.电动汽车等场合都应用到了双向直流变换器.越来越多的双向直流变换器拓扑也被提出,不隔离的双向直流变换器有Bi Buck/Boost.Bi Buck-B ...

  • 高压变频器拓扑综述_罗如山
  • ELECTRONICS WORLD 技术交流 高压变频器拓扑综述 广东石油化工学院自动化系 罗如山 刘 美 王 涛 广州东芝白云菱机电力电子有限公司 曾 光 石 罡 彭云华 [摘要]随着电力电子技术和高压变频器的快速发展,高性能不同类型高压拓扑得到广泛应用,实现高压变频器变换技术的途径有器件串并联. ...

  • 电子镇流器常见拓扑结构及工作原理
  • 电子镇流器常见拓扑结构及工作原 理 复旦大学 王凯 版权保护 抄袭必纠 摘 要 金属卤化物灯(简称金卤灯)作为高强度气体放电灯的重要灯种,由于拥有诸多优点而在绿色照明领域得到广泛应用,特别是在城市道路.商业广场.超市.摄影和工矿照明中大量使用,有着非常大的市场发展空间,随着金卤灯的广泛应用,与之相配 ...

  • 2kw逆变电源主电路设计电081
  • 目 录 1. 主电路的拓扑结构选择------------------------ 1.1 前言···························································· 1.2 确定主电路的拓扑结构选择························· ...