立体几何证明题

如图,原题意就是一个正方体,然后E、F分别是A'B、B'C的中点,求证EF//面ABCD。

那些虚线是我做的辅助线,EM⊥AB,FN⊥BC,连接MN;然后EG⊥BB',连接FG,EF。然后证那个五面体EGF-MBN是个三棱柱,从而证得EF//面ABCD,可不可以?

3

证明:(1)连接BG并延长交PA于点H..

因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...

因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....

即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...

所以GF⊥面PBC...

(2)在BC上取异于E的一点K,,使得CK=1/3BC...

因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..

因为E为BK中点,,BF=FK..所以FE⊥BC...

4

1.设P点的射影是H因为PB=PC=PD,所以H必是BC,DC的中垂线的交点,因为BH^2+PH^2=CH^2+PH^2=DH^2+PH^2又因为A是BC,DC的中垂线的交点,所以A与P重合,PA垂直于平面ABCD.2.取AB中点F,过F做FM垂直AB于M,则∠EMF为所求角因为EF=1/2AP=1,FM=1/2BN=√3/2(N为AC中点)则可求得

5

取CD和BC的中点M,N,连接PM,PN,AM,AN,因为三角形ABC和三角形PBC都为等腰三角形,所以PN垂直于BC,AN还垂直于BC,所以BC垂直于面PAN,所以BC垂直于PA,同理证PA垂直于CD,即可。第二问,建空间直角坐标系,求两个面的法向量,再用向量夹角公式就可求出,结果为arccos(根号下21)/7.

6

PA⊥AB PA⊥AC,∴PA⊥面ABC

∴PA⊥BC,

又∵AB⊥BC

∴BC⊥面PAB,∴BC⊥AE

又因为 AE⊥PB

∴AE⊥面PBC,∴AE⊥PC

又∵ AF⊥PC

∴ PC⊥平面AEF

7

3

证明:(1)连接BG并延长交PA于点H..

因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...

因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....

即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...

所以GF⊥面PBC...

(2)在BC上取异于E的一点K,,使得CK=1/3BC...

因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..

因为E为BK中点,,BF=FK..所以FE⊥BC...

如图,原题意就是一个正方体,然后E、F分别是A'B、B'C的中点,求证EF//面ABCD。

那些虚线是我做的辅助线,EM⊥AB,FN⊥BC,连接MN;然后EG⊥BB',连接FG,EF。然后证那个五面体EGF-MBN是个三棱柱,从而证得EF//面ABCD,可不可以?

3

证明:(1)连接BG并延长交PA于点H..

因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...

因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....

即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...

所以GF⊥面PBC...

(2)在BC上取异于E的一点K,,使得CK=1/3BC...

因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..

因为E为BK中点,,BF=FK..所以FE⊥BC...

4

1.设P点的射影是H因为PB=PC=PD,所以H必是BC,DC的中垂线的交点,因为BH^2+PH^2=CH^2+PH^2=DH^2+PH^2又因为A是BC,DC的中垂线的交点,所以A与P重合,PA垂直于平面ABCD.2.取AB中点F,过F做FM垂直AB于M,则∠EMF为所求角因为EF=1/2AP=1,FM=1/2BN=√3/2(N为AC中点)则可求得

5

取CD和BC的中点M,N,连接PM,PN,AM,AN,因为三角形ABC和三角形PBC都为等腰三角形,所以PN垂直于BC,AN还垂直于BC,所以BC垂直于面PAN,所以BC垂直于PA,同理证PA垂直于CD,即可。第二问,建空间直角坐标系,求两个面的法向量,再用向量夹角公式就可求出,结果为arccos(根号下21)/7.

6

PA⊥AB PA⊥AC,∴PA⊥面ABC

∴PA⊥BC,

又∵AB⊥BC

∴BC⊥面PAB,∴BC⊥AE

又因为 AE⊥PB

∴AE⊥面PBC,∴AE⊥PC

又∵ AF⊥PC

∴ PC⊥平面AEF

7

3

证明:(1)连接BG并延长交PA于点H..

因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...

因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....

即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...

所以GF⊥面PBC...

(2)在BC上取异于E的一点K,,使得CK=1/3BC...

因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..

因为E为BK中点,,BF=FK..所以FE⊥BC...


相关内容

  • 立体几何知识点
  • 立体几何知识点 [重点知识整合] 1. 直线与平面平行的判定和性质 (1)判定:①判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行: ②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行. (2)性质:如果一条直线和一个平面平行,那么经过这条 ...

  • 平面几何五大公理
  • 平面几何五大公理 所谓公理: 1) 经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理. 2) 某个演绎系统的初始命题.这样的命题在该系统内是不需要其他命题加以证明的,并且它们是推出该系统内其他命题的基本命题 欧几里德的<几何原本>,一开始欧几里德就劈头盖脸地给出了 ...

  • 分析法证明立体几何
  • 延长AC到E,延长DC到F,这样,∠ECF与∠A便成了同位角,只要证明∠ECF=∠A就可以了。因为∠ECF与∠ACD是对顶角,所以,证明∠ECF=∠A,其实就是证明∠ACD=∠A。所以,我们说“同位角相等,两直线平行”与“内错角相等,两直线平行”的证明方法是大同小异的。 其实,这样引辅助线之后,∠B ...

  • 高考数学:立体几何重在建立空间概念
  • 立体几何是高中数学中比较容易的一部分,高考中所占分值在20分以上,拿分应该不成问题.从目前复习情况来看,一部分考生学不好的原因大致有三个:一是基础知识不牢固:二是没有建立立体感和空间概念:三是表述不规范.-勤看课本多积累重视课本作用.立体几何课本中的例题.习题除了具有紧扣教材.难度适中.方法典型等特 ...

  • 欧氏几何的公理体系和我国平面
  • 欧氏几何的公理体系和我国平面 几何课本的历史演变 张英伯 (北京师范大学数学科学学院100875) 1.几何原本与几何基础 我们都知道,两千多年前,古希腊的数学家欧几里得写了一本一著名的书一一<原本>.在古往今来的浩瀚书海中,<原本>用各国文字出版的印数仅次于<圣经&g ...

  • 新课程背景下提高初中生推理能力的策略
  • 新课程背景下提高初中生推理能力的策略 林云生 摘 要:数学推理能力的培养是数学教育的核心问题.随着新课程的实施,学生数学学习能力.应用能力都有所提高,但数学证明推理能力反而有所下降.通过调查分析实践研究,提出了适当调整教材顺序.教师直观示范.学会读题审题.学会识图画图.掌握推理格式.学会推理步骤.几 ...

  • 笛沙格定理在初等几何中的应用
  • 天 津 师 范 大 学 号:09505011 专 业:数学与应用数学 级:2009级 完成日期:2013年5月13日 指导教师:武猛 笛沙格定理在初等几何中的应用 摘要:笛沙格定理是射影平面上的重要定理.许多定理以它为依据,利用它也可以证明初等几何中一些共线或共点问题.本文将抓住笛沙格定理的精髓:两 ...

  • 立体几何中平行与垂直的证明
  • 立体几何中平行与垂直的证明 姓名 2. 掌握正确的判定和证明平行与垂直的方法. D 1 [学习目标]1. 通过学习更进一步掌握空间中线面的位置关系; 例1.已知正方体ABCD -A 1B 1C 1D 1, O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1: (2)A 1C ...

  • 怎样培养学生几何逻辑思维能力[1]
  • 怎样培养学生几何逻辑思维能力 数学思维能力是数学素质的重要表现,如何在几何课中培养学生的逻辑思维能力是需要认真探索的.几何的学习和研究时时刻刻在概念.判断.推理过程中运动着,而概念.判断.推理是逻辑思维的基本形式,其它知识内容,如性质.定理.公式等无非是一种判断.培养学生逻辑思维能力有利于学生自觉. ...

  • 立体几何专题二:平行证明方法
  • 立体几何专题复习二:平行证明 1. 证明空间平行基本思路: ①由已知想性质结论,由求证想判定条件,即分析法与综合法相结合寻找证题思路. ②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一. ③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出 ...