初二数学压轴几何证明题(含答案)

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)

如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值;

(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;

(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.

解:(1)EG⊥CG,=,

理由是:过G作GH⊥EC于H,

∵∠FEB=∠DCB=90°,

∴EF∥GH∥DC,

∵G为DF中点,

∴H为EC中点,

∴EG=GC,GH=(EF+DC)=(EB+BC),

即GH=EH=HC,

∴∠EGC=90°,

即△EGC是等腰直角三角形,

∴=;

(2)

解:结论还成立,

理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD, ∵在△EFG和△HDG中

∴△EFG≌△HDG(SAS),

∴DH=EF=BE,∠FEG=∠DHG,

∴EF∥DH,

∴∠1=∠2=90°-∠3=∠4,

∴∠EBC=180°-∠4=180°-∠1=∠HDC,

在△EBC和△HDC中

∴△EBC≌△HDC.

∴CE=CH,∠BCE=∠DCH,

∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,

∴△ECH是等腰直角三角形,

∵G为EH的中点,

∴EG⊥GC,=,

即(1)中的结论仍然成立;

(3)

解:连接BD,

∵AB=,正方形ABCD,

∴BD=2,

∴cos∠DBE==,

∴∠DBE=60°,

∴∠ABE=∠DBE-∠ABD=15°,

∴∠ABF=45°-15°=30°,

∴tan∠ABF=

∴DE=BE=

∴DF=DE-EF=, , -1.

解析:

(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC

,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;

(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;

(3)连接BD,求出cos∠DBE=

形求出即可.

2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.

(1)延长EG交DC于H,试说明:DH=BE.

(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.

(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图

3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由. =,推出∠DBE=60°,求出∠ABF=30°,解直角三角

(1)证明:∵∠BEF=90°,

∴EF∥DH,

∴∠EFG=∠GDH,

而∠EGF=∠DGH,GF=GD,

∴△GEF≌△GHD,

∴EF=DH,

而BE=EF,

∴DH=BE;

(2)连接DB,如图,

∵△BEF为等腰直角三角形,

∴∠EBF=45°,

而四边形ABCD为正方形,

∴∠DBC=45°,

∴D,E,B三点共线.

而∠BEF=90°,

∴△FED为直角三角形,

而G为DF的中点,

∴EG=GD=GC,

∴∠EGC=2∠EDC=90°,

∴EG=CG且EG⊥CG;

(3)第2问中的结论成立.理由如下:

连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,

∵G为DF的中点,O为BD的中点,M为BF的中点,

∴OG∥BF,GM∥OB,

∴四边形OGMB为平行四边形,

∴OG=BM,GM=OB,

而EM=BM,OC=OB,

∴EM=OG,MG=OC,

∵∠DOG=∠GMF,

而∠DOC=∠EMF=90°,

∴∠EMG=∠GOC,

∴△MEG≌△OGC,

∴EG=CG,∠EGM=∠OCG,

又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,

∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,

∴EG=CG且EG⊥CG.

解析:

(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.

(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.

(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF=90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.

3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.

(1)探索EG、CG的数量关系和位置关系并证明;

(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;

(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.

解:(1)EG=CG且EG⊥CG.

证明如下:如图①,连接BD.

∵正方形ABCD和等腰Rt△BEF,

∴∠EBF=∠DBC=45°.

∴B、E、D三点共线.

∵∠DEF=90°,G为DF的中点,∠DCB=90°,

∴EG=DG=GF=CG.

∴∠EGF=2∠EDG,∠CGF=2∠CDG.

∴∠EGF+∠CGF=2∠EDC=90°,

即∠EGC=90°,

∴EG⊥CG.

(2)仍然成立,

证明如下:如图②,延长EG交CD于点H.

∵BE⊥EF,∴EF∥CD,∴∠1=∠2.

又∵∠3=∠4,FG=DG,

∴△FEG≌△DHG,

∴EF=DH,EG=GH.

∵△BEF为等腰直角三角形,

∴BE=EF,∴BE=DH.

∵CD=BC,∴CE=CH.

∴△ECH为等腰直角三角形.

又∵EG=GH,

∴EG=CG且EG⊥CG.

(3)仍然成立.

证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.

∵GF=GD,∠HGF=∠CGD,HG=CG,

∴△HFG≌△CDG,

∴HF=CD,∠GHF=∠GCD,

∴HF∥CD.

∵正方形ABCD,

∴HF=BC,HF⊥BC.

∵△BEF是等腰直角三角形,

∴BE=EF,∠EBC=∠HFE,

∴△BEC≌△FEH,

∴HE=EC,∠BEC=∠FEH,

∴∠BEF=∠HEC=90°,

∴△ECH为等腰直角三角形.

又∵CG=GH,

∴EG=CG且EG⊥CG.

解析:

(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;

(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG.

(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.

已知,正方形ABCD中,△BEF为等腰直角三角形,且

BF为底,取DF的中点G,连接EG、CG.

(1)如图1,若△BEF的底边BF在BC上,猜想EG和CG的数量关系为______;

(2)如图2,若△BEF的直角边BE在BC上,则(1)中的结论是否还成立?请说明理由;

(3)如图3,若△BEF的直角边BE在∠DBC内,则(1)中的结论是否还成立?说明理由.

解:(1)GC=EG,(1分)理由如下:

∵△BEF为等腰直角三角形, ∠DEF=90°,又G为斜边1 ∴

DF的中点, ∴EG=

DF, ABCD为正方形, 2 ∵

∴∠BCD=90°,又G为斜边DF的中点,∴CG= DF, 1 ∴GC=EG;

(2)成立.如图,延长EG交CD于M, 2

∵∠BEF=∠FEC=∠BCD=90°,∴EF∥CD,

∴∠EFG=∠MDG,

又∠EGF=∠DGM,DG=FG,

∴△GEF≌△GMD,

∴EG=MG,即G为EM的中点.

∴CG为直角△ECM的斜边上的中线,

∴CG=GE= EM;

1

2

(3)成立.

取BF的中点H,连接EH,GH,取BD的中点O,连接OG,OC.

∵CB=CD,∠DCB=90°,∴CO= BD

1

2

1

2

∵DG=GF,

∴GH∥BD,且GH= BD,

1 OG∥BF,且OG= BF, 2 ∴CO=GH.

∵△BEF为等腰直角三角形.

1 BF ∴EH=

2

∴EH=OG.

∵四边形OBHG为平行四边形,

∴∠BOG=∠BHG.∵∠BOC=∠BHE=90°.

∴∠GOC=∠EHG.

∴△GOC≌△EHG.

∴EG=GC.

此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.

解析:(1)EG=CG,理由为:根据三角形BEF为等腰直角三角形,得到∠DEF为直角,又G为DF中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG为DF的一半,同理在直角三角形DCF中,得到CG也等于DF的一半,利用等量代换得证;

(2)成立.理由为:延长EG交CD于M,如图所示,根据“ASA”得到三角形EFG与三角形GDM全等,由全等三角形的对应边相等得到EG与MG相等,即G为EM中点,根据直角三角形斜边上的中线等于斜边的一半得到EG与CG相等都等于斜边EM的一半,得证;

(3)成立.理由为:取BF的中点H,连接EH,GH,取BD的中点O,连接OG,OC,如图所示,

因为直角三角形DCB中,O为斜边BD的中点,根据斜边上的中线等于斜边的一半得到OC等于BD的一半,由HG为三角形DBF的中位线,根据三角形的中位线平行于第三边且等于第三边的一半,得到GH等于BD一半,OG等于BF的一半,又根据直角三角形斜边上的中线等于斜边的一半得到EH等于BF的一半,根据等量代换得到OG与EH相等,再根据OBHG为平行四边形,根据平行四边形的性质得到对边相等,对角相等,进而得到∠GOC与∠EHG相等,利用“SAS”得到△GOC与△EHG全等,利用全等三角形的对应边相等即可得证.

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)

如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值;

(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;

(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.

解:(1)EG⊥CG,=,

理由是:过G作GH⊥EC于H,

∵∠FEB=∠DCB=90°,

∴EF∥GH∥DC,

∵G为DF中点,

∴H为EC中点,

∴EG=GC,GH=(EF+DC)=(EB+BC),

即GH=EH=HC,

∴∠EGC=90°,

即△EGC是等腰直角三角形,

∴=;

(2)

解:结论还成立,

理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD, ∵在△EFG和△HDG中

∴△EFG≌△HDG(SAS),

∴DH=EF=BE,∠FEG=∠DHG,

∴EF∥DH,

∴∠1=∠2=90°-∠3=∠4,

∴∠EBC=180°-∠4=180°-∠1=∠HDC,

在△EBC和△HDC中

∴△EBC≌△HDC.

∴CE=CH,∠BCE=∠DCH,

∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,

∴△ECH是等腰直角三角形,

∵G为EH的中点,

∴EG⊥GC,=,

即(1)中的结论仍然成立;

(3)

解:连接BD,

∵AB=,正方形ABCD,

∴BD=2,

∴cos∠DBE==,

∴∠DBE=60°,

∴∠ABE=∠DBE-∠ABD=15°,

∴∠ABF=45°-15°=30°,

∴tan∠ABF=

∴DE=BE=

∴DF=DE-EF=, , -1.

解析:

(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC

,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;

(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;

(3)连接BD,求出cos∠DBE=

形求出即可.

2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.

(1)延长EG交DC于H,试说明:DH=BE.

(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.

(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图

3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由. =,推出∠DBE=60°,求出∠ABF=30°,解直角三角

(1)证明:∵∠BEF=90°,

∴EF∥DH,

∴∠EFG=∠GDH,

而∠EGF=∠DGH,GF=GD,

∴△GEF≌△GHD,

∴EF=DH,

而BE=EF,

∴DH=BE;

(2)连接DB,如图,

∵△BEF为等腰直角三角形,

∴∠EBF=45°,

而四边形ABCD为正方形,

∴∠DBC=45°,

∴D,E,B三点共线.

而∠BEF=90°,

∴△FED为直角三角形,

而G为DF的中点,

∴EG=GD=GC,

∴∠EGC=2∠EDC=90°,

∴EG=CG且EG⊥CG;

(3)第2问中的结论成立.理由如下:

连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,

∵G为DF的中点,O为BD的中点,M为BF的中点,

∴OG∥BF,GM∥OB,

∴四边形OGMB为平行四边形,

∴OG=BM,GM=OB,

而EM=BM,OC=OB,

∴EM=OG,MG=OC,

∵∠DOG=∠GMF,

而∠DOC=∠EMF=90°,

∴∠EMG=∠GOC,

∴△MEG≌△OGC,

∴EG=CG,∠EGM=∠OCG,

又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,

∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,

∴EG=CG且EG⊥CG.

解析:

(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.

(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.

(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF=90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.

3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.

(1)探索EG、CG的数量关系和位置关系并证明;

(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;

(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.

解:(1)EG=CG且EG⊥CG.

证明如下:如图①,连接BD.

∵正方形ABCD和等腰Rt△BEF,

∴∠EBF=∠DBC=45°.

∴B、E、D三点共线.

∵∠DEF=90°,G为DF的中点,∠DCB=90°,

∴EG=DG=GF=CG.

∴∠EGF=2∠EDG,∠CGF=2∠CDG.

∴∠EGF+∠CGF=2∠EDC=90°,

即∠EGC=90°,

∴EG⊥CG.

(2)仍然成立,

证明如下:如图②,延长EG交CD于点H.

∵BE⊥EF,∴EF∥CD,∴∠1=∠2.

又∵∠3=∠4,FG=DG,

∴△FEG≌△DHG,

∴EF=DH,EG=GH.

∵△BEF为等腰直角三角形,

∴BE=EF,∴BE=DH.

∵CD=BC,∴CE=CH.

∴△ECH为等腰直角三角形.

又∵EG=GH,

∴EG=CG且EG⊥CG.

(3)仍然成立.

证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.

∵GF=GD,∠HGF=∠CGD,HG=CG,

∴△HFG≌△CDG,

∴HF=CD,∠GHF=∠GCD,

∴HF∥CD.

∵正方形ABCD,

∴HF=BC,HF⊥BC.

∵△BEF是等腰直角三角形,

∴BE=EF,∠EBC=∠HFE,

∴△BEC≌△FEH,

∴HE=EC,∠BEC=∠FEH,

∴∠BEF=∠HEC=90°,

∴△ECH为等腰直角三角形.

又∵CG=GH,

∴EG=CG且EG⊥CG.

解析:

(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;

(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG.

(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.

已知,正方形ABCD中,△BEF为等腰直角三角形,且

BF为底,取DF的中点G,连接EG、CG.

(1)如图1,若△BEF的底边BF在BC上,猜想EG和CG的数量关系为______;

(2)如图2,若△BEF的直角边BE在BC上,则(1)中的结论是否还成立?请说明理由;

(3)如图3,若△BEF的直角边BE在∠DBC内,则(1)中的结论是否还成立?说明理由.

解:(1)GC=EG,(1分)理由如下:

∵△BEF为等腰直角三角形, ∠DEF=90°,又G为斜边1 ∴

DF的中点, ∴EG=

DF, ABCD为正方形, 2 ∵

∴∠BCD=90°,又G为斜边DF的中点,∴CG= DF, 1 ∴GC=EG;

(2)成立.如图,延长EG交CD于M, 2

∵∠BEF=∠FEC=∠BCD=90°,∴EF∥CD,

∴∠EFG=∠MDG,

又∠EGF=∠DGM,DG=FG,

∴△GEF≌△GMD,

∴EG=MG,即G为EM的中点.

∴CG为直角△ECM的斜边上的中线,

∴CG=GE= EM;

1

2

(3)成立.

取BF的中点H,连接EH,GH,取BD的中点O,连接OG,OC.

∵CB=CD,∠DCB=90°,∴CO= BD

1

2

1

2

∵DG=GF,

∴GH∥BD,且GH= BD,

1 OG∥BF,且OG= BF, 2 ∴CO=GH.

∵△BEF为等腰直角三角形.

1 BF ∴EH=

2

∴EH=OG.

∵四边形OBHG为平行四边形,

∴∠BOG=∠BHG.∵∠BOC=∠BHE=90°.

∴∠GOC=∠EHG.

∴△GOC≌△EHG.

∴EG=GC.

此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.

解析:(1)EG=CG,理由为:根据三角形BEF为等腰直角三角形,得到∠DEF为直角,又G为DF中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG为DF的一半,同理在直角三角形DCF中,得到CG也等于DF的一半,利用等量代换得证;

(2)成立.理由为:延长EG交CD于M,如图所示,根据“ASA”得到三角形EFG与三角形GDM全等,由全等三角形的对应边相等得到EG与MG相等,即G为EM中点,根据直角三角形斜边上的中线等于斜边的一半得到EG与CG相等都等于斜边EM的一半,得证;

(3)成立.理由为:取BF的中点H,连接EH,GH,取BD的中点O,连接OG,OC,如图所示,

因为直角三角形DCB中,O为斜边BD的中点,根据斜边上的中线等于斜边的一半得到OC等于BD的一半,由HG为三角形DBF的中位线,根据三角形的中位线平行于第三边且等于第三边的一半,得到GH等于BD一半,OG等于BF的一半,又根据直角三角形斜边上的中线等于斜边的一半得到EH等于BF的一半,根据等量代换得到OG与EH相等,再根据OBHG为平行四边形,根据平行四边形的性质得到对边相等,对角相等,进而得到∠GOC与∠EHG相等,利用“SAS”得到△GOC与△EHG全等,利用全等三角形的对应边相等即可得证.


相关内容

  • 初三怎么过
  • [小杨心得]时间方面安排: 1.初二暑假开始为中考作准备,可以选择上补习班和预习初三课程内容. 2.每天给自己列一个计划表,好好利用暑假的时间. * 时间越多,准备越充分,中考越能有把握. [小杨心得]平时学习和生活方面: 平时学习和生活方面: 1.课堂上认真听讲,认真做笔记,回家后能争取给自己1- ...

  • 中考冲刺计划2014
  • 中考冲刺计划2013 第一篇:中考冲刺2013范文 距离中考还有三个月的时间,怎样复习收效才更好呢? 为了更好地服务于初三考生,中考专家组的老师们特地就语数外三科最后一个月如何进行复习作出了解答. 数学:课内外复习要结合 从3月9日同学们集中复习到中考刚好只有三个月时间.最后这三个月复习时间里,老师 ...

  • 初高中各学科特点(1)
  • 初一 [年级危机] 这是初中阶段最为关键的一个年级,因为初一是打基础的学习阶段.这些孩子学习方法尤为重要 初一是学生一生学习的转折点,初一学生的学习心态,决定着他的成绩定位.成绩档次,甚至影响他的高考成绩.很多小学生升入初中后不堪重负,成绩大幅下滑,主要是缺少学习方法,小学课程只有三门,只要用心就能 ...

  • 初中数学知识重点.考点
  • 初中数学重点知识 目录 初一(上) 第 九 章 整式 第 十 章 第 十一 章 初一(下) 第 十二 章 第 十三 章 第 十四 章 第 十五 章 初二(上) 第 十六 章 第 十七 章 第 十八 章 第 十九 章 初二(下) 第 二十 章 第二十一章 第二十二章 第二十三章 初三 第二十四章 第二 ...

  • 初二学习为何如此重要和关键
  • 初二学习为何如此重要和关键 初二是一个非常关键的阶段,这学期的内容某种程度上被称为中考的"心脏".新学期开始,新初三学生已经进入了紧张的毕业班学习.初二的学习在整个初中阶段属于一个衔接过渡.所以,初二的学习一定不容忽视.一定得努力做好初二到初三的过渡学习!为自己初三的学习及中考打 ...

  • 三角形全等添加辅助线口诀
  • 三角形全等添加辅助线口诀 人说几何很困难, 难点就在辅助线, 辅助线,如何添加?把握定理和概念, 还要刻苦加钻研, 找出规律凭经验, 图中有角平分线, 可向两边引垂线, 也可将图对折看, 对称以后关系现, 角平分线平行线, 等腰三角形来添, 角平分线加垂线, 三线合一试试看, 线段垂直平分线, 常向 ...

  • 数学试卷答题技巧
  • 数学试卷答题技巧 一.试卷答题技巧 问题1:老师基础题怎么得分,有些小题目也很难怎么办,数字很难及格 爱智康王晗老师:不要慌,现在的时间节点只能有针对性的找基础题练习,比如选填除了最后的2道题,大题的三角,统计和立体几何还是很容易拿分的.导数和解析几何的第一问也要拿到分,发挥稳一点,不该错的部分确保 ...

  • 八年级数学2
  • 共 142 篇文章显示摘要每页显示 103050 条 2013届北京市中考数学二轮专题突破复习课件四边形中档解答题. 阅11  转4  评0  公众公开  13-03-31 20:37 几何证明中的几种技巧(教师用) 阅46  转10  评0  公众公开  13-03-29 22:36 二次根式的解 ...

  • 你不可拒绝的初二数学公众号|Math题酷
  • ?如果你今年初二,希望数学得到提升,那么你有福了.新东方优能中学初中数学组为初二的你量身打造了一款有格调的数学公众号,即"MATH题酷",让我们来围观下吧.1.题目层次鲜明,更有针对性每周三天不同题型,针对分数不同.做题时间不多的你. 简单每周一基础题,检测知识点输入 中等 每周 ...