AR磷酸化修饰

Post-translational modifications: Sumoylated on Lys-386 (major) and Lys-520. Ubiquitinated. Deubiquitinated by USP26. 'Lys-6' and 'Lys-27'-linked

polyubiquitination by RNF6 modulates AR transcriptional activity and specificity Phosphorylated in prostate cancer cells in response to several growth factors including EGF. Phosphorylation is induced by c-Src kinase (CSK). Tyr-534 is one of the major phosphorylation sites and an increase in phosphorylation and Src kinase activity is associated with prostate cancer progression.

Phosphorylation by TNK2 enhances the DNA-binding and transcriptional

activity and may be responsible for androgen-independent progression

of prostate cancer. Phosphorylation at Ser-81 by CDK9 regulates AR promoter selectivity and cell growth.

Phosphorylation by PAK6 leads to AR-mediated transcription inhibitionPalmitoylated by ZDHHC7 and ZDHHC21. Palmitoylation is required for plasma membrane targeting and for rapid

intracellular signaling via ERK and AKT kinases and cAMP generation

1Ubiquitination at Lys845, Lys847

, , , , , , Description

Androgen Receptor nuclear signaling

Androgen is the active metabolic product, 5alpha-Dihydrotestosterone , which is produced from the transformation ofTestosterone catalyzed by the

Steroid-5-alpha-reductase, alpha polypeptides 1 and 2 ( S5AR1 and S5AR2 ) , . Biological activity of androgens is mediated by binding to the Androgen receptor , a member of the nuclear receptor superfamily that functions as a ligand-activated transcription factor , .

Binding

of Testosterone or 5alpha-Dihydrotestosterone to Androgen receptor induces its dimerization, which is needed for binding to Androgen receptor 's cognate response element and recruitment of co-regulators, such as transcriptional co-activator protein E1A binding protein p300 ( p300 ), Nuclear receptor co-activators 1 and 2 ( NCOA1

(SRC1), NCOA2 (GRIP1/TIF2) ) . Androgen receptor with co-regulators induces expression of target genes, such as Prostate specific antigen Kallikrein-related peptidase 3 ( Kallikrein 3 (PSA) ) in prostate , cyclin-dependent kinase inhibitor

Cyclin-dependent kinase inhibitor 1A (p21 ) , Ezrin ( VIL2(ezrin) ) , Matrix metalloproteinase 2 ( MMP-2 ) and SREBF chaperone ( SCAP ) . Besides co-activators, Androgen receptor can also recruit co-repressors such as Cyclin D1 , RAD9 homologs ( RAD9 ) , Nuclear receptor co-repressor 1

( N-CoR ) and others.

Androgen receptor activity is tightly regulated by distinct growth factor cascades, which can induce Androgen receptor modifications, including phosphorylation and acetylation or changes in interactions of Androgen receptor with other cofactors. Epidermal growth factor ( EGF), Insulin-like growth factor 1 ( IGF-1 ), Interleukin-6 ( IL-6 ) and ligands stimulating the Protein kinase A, cAMP-dependent ( PKA-cat (cAMP-dependent) ) pathways activate Androgen receptor by phosphorylation in the absence of androgens either directly or indirectly via mitogen-activated protein kinase (MAPK) cascade and other signaling pathways in certain prostate cancer cells and, thereby, contribute

to Androgen receptor -induced gene expression .

Binding of IGF-1 ligands to Insulin-like growth factor 1 receptor ( IGF-1 receptor ) leads to activation of MAPK cascade. Phosphorylated IGF-1 receptor can directly interact with and phosphorylate adaptor protein SHC (Src homology 2 domain containing) transforming protein 1 ( Shc ), resulting in the recruitment of the complex containing Growth factor receptor-bound protein 2 ( GRB2 ) and Son of sevenless homolog ( SOS ) and activation of small GTPase v-Ha-ras Harvey rat sarcoma viral oncogene homolog

( H-Ras ), v-raf-1 murine leukemia viral oncogene homolog 1 ( c-Raf-1 ), and the MAPK cascade Mitogen-activated protein kinase kinase 1 ( MEK1(MAP2K1) )/

Mitogen-activated protein kinase 1 ( ERK2(MAPK1) ) .

ERK2(MAPK1) kinase, in turn, phosphorylates and activates Androgen receptor itself and Androgen receptor co-activators such as NCOA1 (SRC1) and NCOA2 (GRIP1/TIF2) .

EGF enhances activity of Androgen receptor through activation of MAPK

cascade , .

IL-6 enhances Androgen receptor transactivation mainly via Signal transducer and activator of transcription 3 ( STAT3 ), which associates with Androgen receptor and is also able to induce Androgen receptor -mediated gene activation .

There is a cross talk between members of wingless-type MMTV integration site family ( WNT ) and androgen signaling pathways. Catenin (cadherin-associated protein), beta 1 (Beta-catenin) protein, is a critical molecular component of canonical WNT signaling, flowing through Galpha(q)-specific frizzled GPCRs and Dishevelled

( Dsh ). Beta-catenin promotes androgen signaling through binding

to Androgen receptor in a ligand-dependent fashion and the follow-up transcription activation of androgen-regulated genes , , . Glycogen synthase kinase 3 beta ( GSK3 beta ) involved in WNT signaling pathway, also functions as a repressor of Androgen receptor -mediated transactivation and cell growth via direct

phosphorylation ofAndrogen receptor .

Transforming growth factor, beta 1 ( TGF-beta 1 ) - mediated action follows a complex signaling pathway from its binding to Transforming growth factor, beta receptors 1 and II ( TGF-beta receptor type I, TGF-beta receptor type II ) and their phosphorylation to activation of transcription factor SMAD family member 3 ( SMAD3 ). SMAD3 interacts with Androgenreceptor and activate Androgen receptor transcriptional activity in context-dependent manner .

p21 protein (Cdc42/Rac)-activated kinase 6 ( PAK6 ) is a serine/threonine kinase from the p21-activated kinase family. ActivePAK6 phosphorylates Androgen receptor and inhibits its nuclear translocation .

Activation of the Phosphoinositide-3-kinase/ v-akt murine thymoma viral oncogene

homolog 1 ( AKT1 ) pathway results in AKT1-dependent phosphorylation of Androgen Receptor , suppression of Androgen receptor target genes, such as p21, and the decrease of androgen/ Androgen receptor -mediated apoptosis .

Proline-rich tyrosine kinase 2 ( Pyk2(FAK2) ) can

repress Androgen receptor transactivation via inactivation

of Androgenreceptor co-activator Transforming growth factor beta 1 induced transcript 1 ( Hic-5/ARA55 ). This inactivation may result from the direct phosphorylation of Hic-5/ARA55 by Pyk2(FAK2) at tyrosine 43, impairing the co-activator activity of Hic-5/ARA55and/or its sequestering to reduce the interaction

with Androgen receptor .

References:

1. Wilson JD

Reproduction, fertility, and development 2001;13(7-8):673-8

2. Heinlein CA, Chang C

Endocrine reviews 2004 Apr;25(2):276-308

3. Gelmann EP

Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2002 Jul 1;20(13):3001-15

4. McEwan IJ

Endocrine-related cancer 2004 Jun;11(2):281-93

5. Roy AK, Tyagi RK, Song CS, Lavrovsky Y, Ahn SC, Oh TS, Chatterjee B

Annals of the New York Academy of Sciences 2001 Dec;949:44-57

6. Kim J, Coetzee GA

Journal of cellular biochemistry 2004 Oct 1;93(2):233-41

7. Lu S, Liu M, Epner DE, Tsai SY, Tsai MJ

Molecular endocrinology (Baltimore, Md.) 1999 Mar;13(3):376-84

8. Chuan YC, Pang ST, Cedazo-Minguez A, Norstedt G, Pousette A,

Flores-Morales A

The Journal of biological chemistry 2006 Jul 26;

9. Li BY, Liao XB, Fujito A, Thrasher JB, Shen F, Xu PY

Asian journal of andrology 2006 Aug 4;

10. Heemers H, Verrijdt G, Organe S, Claessens F, Heyns W, Verhoeven G,

Swinnen JV

The Journal of biological chemistry 2004 Jul

16;279(29):30880-7

11. Petre CE, Wetherill YB, Danielsen M, Knudsen KE

The Journal of biological chemistry 2002 Jan 18;277(3):2207-15

12. Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C

Molecular and cellular biology 2004 Mar;24(5):2202-13

13. Wu Y, Kawate H, Ohnaka K, Nawata H, Takayanagi R

Molecular and cellular biology 2006 Sep;26(17):6633-55

14. Culig Z

Growth factors (Chur, Switzerland) 2004 Sep;22(3):179-84

15. Rowan BG, Weigel NL, O'Malley BW

The Journal of biological chemistry 2000 Feb 11;275(6):4475-83

16. Reinikainen P, Palvimo JJ, Janne OA

Endocrinology 1996 Oct;137(10):4351-7

17. Gupta C

Molecular and cellular

endocrinology 1999 Jun 25;152(1-2):169-78

18. De Miguel F, Lee SO, Onate SA, Gao AC

Nuclear receptor

[electronic resource]. 2003 Jun 13;1(1):3

19. Song LN, Herrell R, Byers S, Shah S, Wilson EM, Gelmann EP

Molecular and cellular biology 2003 Mar;23(5):1674-87

20. Chesire DR, Isaacs WB

Endocrine-related cancer 2003 Dec;10(4):537-60

21. Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC

Endocrine reviews 2005 Aug 26;

22. Wang L, Lin HK, Hu YC, Xie S, Yang L, Chang C

The Journal of biological

chemistry 2004 Jul 30;279(31):32444-52

23. Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C

The Journal of biological chemistry 2002 Nov

15;277(46):43749-56

24. Schrantz N, da Silva Correia J, Fowler B, Ge Q, Sun Z, Bokoch GM

The Journal of biological chemistry 2004 Jan 16;279(3):1922-31

25. Lin HK, Yeh S, Kang HY, Chang C

Proceedings of the National Academy of Sciences of the United States of America 2001 Jun 19;98(13):7200-5

26. Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, Yeh S, Wu G, Guo Y,

Chang C

The Journal of biological chemistry 2002 May 3;277(18):15426-31

Post-translational modifications: Sumoylated on Lys-386 (major) and Lys-520. Ubiquitinated. Deubiquitinated by USP26. 'Lys-6' and 'Lys-27'-linked

polyubiquitination by RNF6 modulates AR transcriptional activity and specificity Phosphorylated in prostate cancer cells in response to several growth factors including EGF. Phosphorylation is induced by c-Src kinase (CSK). Tyr-534 is one of the major phosphorylation sites and an increase in phosphorylation and Src kinase activity is associated with prostate cancer progression.

Phosphorylation by TNK2 enhances the DNA-binding and transcriptional

activity and may be responsible for androgen-independent progression

of prostate cancer. Phosphorylation at Ser-81 by CDK9 regulates AR promoter selectivity and cell growth.

Phosphorylation by PAK6 leads to AR-mediated transcription inhibitionPalmitoylated by ZDHHC7 and ZDHHC21. Palmitoylation is required for plasma membrane targeting and for rapid

intracellular signaling via ERK and AKT kinases and cAMP generation

1Ubiquitination at Lys845, Lys847

, , , , , , Description

Androgen Receptor nuclear signaling

Androgen is the active metabolic product, 5alpha-Dihydrotestosterone , which is produced from the transformation ofTestosterone catalyzed by the

Steroid-5-alpha-reductase, alpha polypeptides 1 and 2 ( S5AR1 and S5AR2 ) , . Biological activity of androgens is mediated by binding to the Androgen receptor , a member of the nuclear receptor superfamily that functions as a ligand-activated transcription factor , .

Binding

of Testosterone or 5alpha-Dihydrotestosterone to Androgen receptor induces its dimerization, which is needed for binding to Androgen receptor 's cognate response element and recruitment of co-regulators, such as transcriptional co-activator protein E1A binding protein p300 ( p300 ), Nuclear receptor co-activators 1 and 2 ( NCOA1

(SRC1), NCOA2 (GRIP1/TIF2) ) . Androgen receptor with co-regulators induces expression of target genes, such as Prostate specific antigen Kallikrein-related peptidase 3 ( Kallikrein 3 (PSA) ) in prostate , cyclin-dependent kinase inhibitor

Cyclin-dependent kinase inhibitor 1A (p21 ) , Ezrin ( VIL2(ezrin) ) , Matrix metalloproteinase 2 ( MMP-2 ) and SREBF chaperone ( SCAP ) . Besides co-activators, Androgen receptor can also recruit co-repressors such as Cyclin D1 , RAD9 homologs ( RAD9 ) , Nuclear receptor co-repressor 1

( N-CoR ) and others.

Androgen receptor activity is tightly regulated by distinct growth factor cascades, which can induce Androgen receptor modifications, including phosphorylation and acetylation or changes in interactions of Androgen receptor with other cofactors. Epidermal growth factor ( EGF), Insulin-like growth factor 1 ( IGF-1 ), Interleukin-6 ( IL-6 ) and ligands stimulating the Protein kinase A, cAMP-dependent ( PKA-cat (cAMP-dependent) ) pathways activate Androgen receptor by phosphorylation in the absence of androgens either directly or indirectly via mitogen-activated protein kinase (MAPK) cascade and other signaling pathways in certain prostate cancer cells and, thereby, contribute

to Androgen receptor -induced gene expression .

Binding of IGF-1 ligands to Insulin-like growth factor 1 receptor ( IGF-1 receptor ) leads to activation of MAPK cascade. Phosphorylated IGF-1 receptor can directly interact with and phosphorylate adaptor protein SHC (Src homology 2 domain containing) transforming protein 1 ( Shc ), resulting in the recruitment of the complex containing Growth factor receptor-bound protein 2 ( GRB2 ) and Son of sevenless homolog ( SOS ) and activation of small GTPase v-Ha-ras Harvey rat sarcoma viral oncogene homolog

( H-Ras ), v-raf-1 murine leukemia viral oncogene homolog 1 ( c-Raf-1 ), and the MAPK cascade Mitogen-activated protein kinase kinase 1 ( MEK1(MAP2K1) )/

Mitogen-activated protein kinase 1 ( ERK2(MAPK1) ) .

ERK2(MAPK1) kinase, in turn, phosphorylates and activates Androgen receptor itself and Androgen receptor co-activators such as NCOA1 (SRC1) and NCOA2 (GRIP1/TIF2) .

EGF enhances activity of Androgen receptor through activation of MAPK

cascade , .

IL-6 enhances Androgen receptor transactivation mainly via Signal transducer and activator of transcription 3 ( STAT3 ), which associates with Androgen receptor and is also able to induce Androgen receptor -mediated gene activation .

There is a cross talk between members of wingless-type MMTV integration site family ( WNT ) and androgen signaling pathways. Catenin (cadherin-associated protein), beta 1 (Beta-catenin) protein, is a critical molecular component of canonical WNT signaling, flowing through Galpha(q)-specific frizzled GPCRs and Dishevelled

( Dsh ). Beta-catenin promotes androgen signaling through binding

to Androgen receptor in a ligand-dependent fashion and the follow-up transcription activation of androgen-regulated genes , , . Glycogen synthase kinase 3 beta ( GSK3 beta ) involved in WNT signaling pathway, also functions as a repressor of Androgen receptor -mediated transactivation and cell growth via direct

phosphorylation ofAndrogen receptor .

Transforming growth factor, beta 1 ( TGF-beta 1 ) - mediated action follows a complex signaling pathway from its binding to Transforming growth factor, beta receptors 1 and II ( TGF-beta receptor type I, TGF-beta receptor type II ) and their phosphorylation to activation of transcription factor SMAD family member 3 ( SMAD3 ). SMAD3 interacts with Androgenreceptor and activate Androgen receptor transcriptional activity in context-dependent manner .

p21 protein (Cdc42/Rac)-activated kinase 6 ( PAK6 ) is a serine/threonine kinase from the p21-activated kinase family. ActivePAK6 phosphorylates Androgen receptor and inhibits its nuclear translocation .

Activation of the Phosphoinositide-3-kinase/ v-akt murine thymoma viral oncogene

homolog 1 ( AKT1 ) pathway results in AKT1-dependent phosphorylation of Androgen Receptor , suppression of Androgen receptor target genes, such as p21, and the decrease of androgen/ Androgen receptor -mediated apoptosis .

Proline-rich tyrosine kinase 2 ( Pyk2(FAK2) ) can

repress Androgen receptor transactivation via inactivation

of Androgenreceptor co-activator Transforming growth factor beta 1 induced transcript 1 ( Hic-5/ARA55 ). This inactivation may result from the direct phosphorylation of Hic-5/ARA55 by Pyk2(FAK2) at tyrosine 43, impairing the co-activator activity of Hic-5/ARA55and/or its sequestering to reduce the interaction

with Androgen receptor .

References:

1. Wilson JD

Reproduction, fertility, and development 2001;13(7-8):673-8

2. Heinlein CA, Chang C

Endocrine reviews 2004 Apr;25(2):276-308

3. Gelmann EP

Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2002 Jul 1;20(13):3001-15

4. McEwan IJ

Endocrine-related cancer 2004 Jun;11(2):281-93

5. Roy AK, Tyagi RK, Song CS, Lavrovsky Y, Ahn SC, Oh TS, Chatterjee B

Annals of the New York Academy of Sciences 2001 Dec;949:44-57

6. Kim J, Coetzee GA

Journal of cellular biochemistry 2004 Oct 1;93(2):233-41

7. Lu S, Liu M, Epner DE, Tsai SY, Tsai MJ

Molecular endocrinology (Baltimore, Md.) 1999 Mar;13(3):376-84

8. Chuan YC, Pang ST, Cedazo-Minguez A, Norstedt G, Pousette A,

Flores-Morales A

The Journal of biological chemistry 2006 Jul 26;

9. Li BY, Liao XB, Fujito A, Thrasher JB, Shen F, Xu PY

Asian journal of andrology 2006 Aug 4;

10. Heemers H, Verrijdt G, Organe S, Claessens F, Heyns W, Verhoeven G,

Swinnen JV

The Journal of biological chemistry 2004 Jul

16;279(29):30880-7

11. Petre CE, Wetherill YB, Danielsen M, Knudsen KE

The Journal of biological chemistry 2002 Jan 18;277(3):2207-15

12. Wang L, Hsu CL, Ni J, Wang PH, Yeh S, Keng P, Chang C

Molecular and cellular biology 2004 Mar;24(5):2202-13

13. Wu Y, Kawate H, Ohnaka K, Nawata H, Takayanagi R

Molecular and cellular biology 2006 Sep;26(17):6633-55

14. Culig Z

Growth factors (Chur, Switzerland) 2004 Sep;22(3):179-84

15. Rowan BG, Weigel NL, O'Malley BW

The Journal of biological chemistry 2000 Feb 11;275(6):4475-83

16. Reinikainen P, Palvimo JJ, Janne OA

Endocrinology 1996 Oct;137(10):4351-7

17. Gupta C

Molecular and cellular

endocrinology 1999 Jun 25;152(1-2):169-78

18. De Miguel F, Lee SO, Onate SA, Gao AC

Nuclear receptor

[electronic resource]. 2003 Jun 13;1(1):3

19. Song LN, Herrell R, Byers S, Shah S, Wilson EM, Gelmann EP

Molecular and cellular biology 2003 Mar;23(5):1674-87

20. Chesire DR, Isaacs WB

Endocrine-related cancer 2003 Dec;10(4):537-60

21. Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC

Endocrine reviews 2005 Aug 26;

22. Wang L, Lin HK, Hu YC, Xie S, Yang L, Chang C

The Journal of biological

chemistry 2004 Jul 30;279(31):32444-52

23. Kang HY, Huang KE, Chang SY, Ma WL, Lin WJ, Chang C

The Journal of biological chemistry 2002 Nov

15;277(46):43749-56

24. Schrantz N, da Silva Correia J, Fowler B, Ge Q, Sun Z, Bokoch GM

The Journal of biological chemistry 2004 Jan 16;279(3):1922-31

25. Lin HK, Yeh S, Kang HY, Chang C

Proceedings of the National Academy of Sciences of the United States of America 2001 Jun 19;98(13):7200-5

26. Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, Yeh S, Wu G, Guo Y,

Chang C

The Journal of biological chemistry 2002 May 3;277(18):15426-31


相关内容

  • 染色质修饰
  • 常染色质:着色浅而均匀,螺旋化程度低(直径小,10 nm),转录活跃,复制较早,多位于细胞核中央. 异染色质:着色深而不均匀,螺旋化程度高(直径大,20~30 nm),无转录,复制较晚,多位于细胞核边缘,含高比例C.T碱基和高度重复DNA序列(图28~29). 1. 染色质 化学修饰的类型及其作用( ...

  • 蛋白质修饰位点预测详解
  • 蛋白质修饰位点分析 目录 实验目的..................................................................................................................................... ...

  • 翻译后修饰蛋白质组学研究的技术策略
  • ISS N 100727626C N 1123870ΠQ 中国生物化学与分子生物学报 2007年2月23(2) :93-100 ・综述・ 翻译后修饰蛋白质组学研究的技术策略 刘金凤, 王京兰, 钱小红, 蔡 耘 3 (北京蛋白质组研究中心, 军事医学科学院放射医学研究所, 北京 100850) 摘要 ...

  • 蛋白质磷酸化修饰的研究进展
  • LETTERSINBIOTECHNOLOGY 生物技术通讯 Vol.20No.2Mar.,2009 233 doi:10.3969/j.issn.1009-0002.2009.02.025 综述 蛋白质磷酸化修饰的研究进展 姜铮,王芳,何湘,刘大伟,陈宣男,赵红庆,黄留玉,袁静 中国人民解放军疾病预 ...

  • 组蛋白磷酸化的机制及其作用研究进展
  • 细胞生物学杂志 Chinese Journal of Cell Biology 2009, 31(2): 178−182http://www.cjcb.org 组蛋白磷酸化的机制及其作用研究进展 赵树靓 房静远* (上海交通大学医学院附属仁济医院, 上海市消化疾病研究所, 上海200001) 摘要 ...

  • 9 物质代谢和调节
  • 第九章 物质代谢的联系与调节 内容提要 物质代谢是生命的本质特征,是生命活动的物质基础.体内各种物质代谢是相互联系.相互制约的.体内物质代谢的特点:①整体性:②在精细调节下进行:③各组织器官物质代谢各具特色:④具有共同的代谢池:⑤ATP是共同能量形式:⑥NADPH是代谢所需的还原当量.各代谢途径之间 ...

  • Chapter 9 蛋白质组研究中的翻译后修饰
  • 第九章 蛋白质组研究中的翻译后修饰 1. 磷酸化蛋白质组研究 1.1 概况 1.1.1 蛋白质磷酸化 在生命现象的许多关键调节机制中,蛋白质磷酸化是最主要的翻译后修饰.在1950s 发现磷酸化酶a 和磷酸化酶b 原来是同一种酶的磷酸化和去磷酸化形式,从那时开始,人们就开始将蛋白质的磷酸化看作是一种动 ...

  • 线性泛素化修饰研究进展
  • Hereditas (Beijing) 2015年9月, 37(9): 911―917 www.chinagene.cn 综 述 线性泛素化修饰研究进展 何珊,张令强 军事医学科学院放射辐射与医学研究所,北京蛋白质组研究中心,蛋白质组学国家重点实验室, 北京100850 摘要: 蛋白质泛素化修饰过程 ...

  • 第七章细胞质基质与内膜系统及蛋白质分选转运
  • 第一节 细胞质基质 一.细胞质基质的涵义 细胞质基质指细胞质中除去细胞器和内膜系统留下的无一定形态结构的胶状物质.有的学者称为胞质溶胶.主要含有与中间代谢有关的数千种酶类以及与维持细胞形态和物质运输有关的细胞质骨架结构.已有的证据显示,细胞质基质可能是一个高度有序且又不断变化的结构体系,细胞骨架纤维 ...

  • 生物化学模拟题库
  • 第22章模拟试题 模拟试题(1) 一.判断题(正√,误×) 1. 构成所有蛋白质的氨基酸都是α-氨基酸.(√) 2. 羧肽酶A 和B 联合可以从羧基端开始逐一水解所有肽类物质.(×) 3. 根据Anfinsen 牛胰核糖核酸酶的实验结果,可以推测牛胰核糖核酸酶的生物合成途径中不 存在肽链的断裂和拼接 ...