检修别克君威冷却风扇工作异常

【摘要】:一辆行驶里程约KM 的通用别克君威轿车。车主反映:该车的水温过高,冷却风扇工作异常。

接车后对此车进行试车检查,结果发现此车水温表指针已接近红区,检查冷却风扇右侧风扇高速运转,而左侧的风扇转速很低,比低速挡时还要慢,此时发动机已过热。关闭发动机,接通TECH2,用TECH2 驱动2 个风扇以高速挡旋转,发现右侧风扇转速正常,而左侧风扇有时转,有时不转。在驱动风扇高速旋转的同时,测得左侧风扇插头两端的电压在2~5V 之间变化,而右侧风扇工作电压为12V 。检查发现风扇线束与车身线束连接器C105 处的棕色线与蓝色端子已严重烧蚀,插座塑料件也已熔化变形。清理插座并重新打磨端子后连接好,试车,故障依旧。用2根导线跨接插头,即分别短路插头中棕色线和蓝色线,结果仍不能排除故障。由此看来,线路的其他部分可能还存在故障。

此时没有了头绪,找来了该车型的维修手册认真分析。

分析冷却风扇的控制电路,别克轿车冷却风扇的工作由动力系统模块(PCM)控制,低转速旋转时2 个风扇串联,每个风扇的工作电压是供电电压的一半; 高速旋转时2 个风扇并联,每个风扇的工作电压就是电源的电压。

1. 风扇低速电路分析

在以下情况下,PCM 控制散热风扇低速运转:

1) 发动机冷却液温度超过106℃;

2) 需要空调系统工作且周围温度超过50℃;

3) 当空调制冷压力大于1.3MPa(空调压力传感器电压达2V);

4) 点火开关关闭且发动机冷却液温度为140℃。

PCM 控制散热风扇低速运转时,其C1-6 脚为低电平,为继电器12 提供接地回路,继电器12 工作,此时左、右2 个风扇

串联,每个风扇的工作电压为供电电压的一半,2 个风扇同时低速运转。电流路径为:熔丝6(40A)→继电器12触点(87-30)→左侧风扇→继电器9的常闭触点(30-87A)→右侧风扇→结点S105→搭铁点G117。

2. 风扇高速电路分析

在以下情况下,PCM 控制散热器风扇高速运转:

1) 发动机冷却液温度超过110℃;

2) 空调制冷压力大于1.67MPa(空调压力传感器电压达2.5V) 。PCM 控制散热风扇高速运转时,其C1-6 脚和C1-5 脚为低电平,为继电器9、10 和12 提供接地回路,此时左、右2 个风扇并联,每个风扇都是单独的接地通路,因而2 个风扇高速运转。

左侧风扇电流路径为:保险丝6(40A)→继电器12 触点(87-30)→左侧风扇→继电器9 的常开触点(30 -87)→结点S105 →搭铁点G117。

右侧风扇电流路径为:保险丝21(15A)→继电器10 触点(30-87)→右侧风扇→结点S105→搭铁点G117。

在用TECH2 驱动风扇高速运转的同时,用万用表电压挡测量插头C105 发动机线束侧的浅蓝色线与接地间的电压为12V ,测量灰色线与接地间电压为9V(正常为0V) ,说明灰色线(532 电路) 搭铁不良。试更换继电器9,更换后故障依旧。拆下继电器盒,拆下插头,发现C11 端子严重烧蚀,从插座中脱落下来一段线,灰色线的线皮已熔化,继电器盒及相应插脚已烧蚀变形。打磨、清理并固定继电器盒背面的插座和端子后装复,用TECH2 驱动,检查左侧风扇高速旋转正常,但用手放在左侧风扇后面感觉风量比右侧风扇小,仔细检查发现左侧向前吹风,而不是向后吸。进一步检查线路,发现风扇线束(风扇小的线束)

中棕色线与蓝色线对调了,造成左侧风扇反转,汽车向前行驶时使风扇的运转阻力增大,电流增大,烧损了风扇线束插头及继电器盒等部件。

规则。估计原修理工将导线接反的原因可能是此线束中2 根线切断后,再连接时,因导线的颜色已退去,不易区分,于是修理工想当然地认为2 个风扇的旋转方向相同,按右侧风扇的旋转方向连接了左侧风扇线束,对别克轿车而言,这样恰好是接反了。

出现以上修理失误,是因为原修理工对别克轿车风扇的控制特点及工作原理不了解所致,下面对别克轿车冷却风扇的控制特点及维修方法做一个简单介绍。

在检修别克轿车冷却风扇控制电路时,应注意几个特点:一是开空调后,冷却风扇并不一定低速运转,是否低速运转取决于当时的冷却液温度(大于50℃) 和空调系统高压侧压力(大于

1.30MPa) 。二是风扇在符合高速运转条件时,必须先使2 个风扇低速运转3s ,然后再接通2 个风扇的高速。这个3s 延时的目的就是防止其超载。如果我们用TECH2 从静止直接驱动冷却风扇高速运转,PCM 先是控制继电器12 工作,2 个风扇串联,低速运转3s 后,继电器9和10 才工作,2 个风扇并联,同时高速运转,这一过程非常明显。三是为了减小2 个风扇运转时的噪声与振动,左、右2 个风扇的旋转方向是相反的,但因2 个风扇叶片的角度方向相反,故风向是相同的,更换风扇叶片时,如果左、右风扇叶片装反,会造成严重的运转噪声和振动,这在维修中时有发生,修理人员在维修过程中应注意。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继

电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一

车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现

已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号

在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的根本原因就是日光传感器短路的问题。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显

示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针

的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我

相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的根本原因就是日光传感器短路的问题。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口

只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与

GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应

的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装

在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的根本原因就是日光传感器短路的问题。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能

有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,

压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起

复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的

根本原因就是日光传感器短路的问题。

【摘要】:一辆行驶里程约KM 的通用别克君威轿车。车主反映:该车的水温过高,冷却风扇工作异常。

接车后对此车进行试车检查,结果发现此车水温表指针已接近红区,检查冷却风扇右侧风扇高速运转,而左侧的风扇转速很低,比低速挡时还要慢,此时发动机已过热。关闭发动机,接通TECH2,用TECH2 驱动2 个风扇以高速挡旋转,发现右侧风扇转速正常,而左侧风扇有时转,有时不转。在驱动风扇高速旋转的同时,测得左侧风扇插头两端的电压在2~5V 之间变化,而右侧风扇工作电压为12V 。检查发现风扇线束与车身线束连接器C105 处的棕色线与蓝色端子已严重烧蚀,插座塑料件也已熔化变形。清理插座并重新打磨端子后连接好,试车,故障依旧。用2根导线跨接插头,即分别短路插头中棕色线和蓝色线,结果仍不能排除故障。由此看来,线路的其他部分可能还存在故障。

此时没有了头绪,找来了该车型的维修手册认真分析。

分析冷却风扇的控制电路,别克轿车冷却风扇的工作由动力系统模块(PCM)控制,低转速旋转时2 个风扇串联,每个风扇的工作电压是供电电压的一半; 高速旋转时2 个风扇并联,每个风扇的工作电压就是电源的电压。

1. 风扇低速电路分析

在以下情况下,PCM 控制散热风扇低速运转:

1) 发动机冷却液温度超过106℃;

2) 需要空调系统工作且周围温度超过50℃;

3) 当空调制冷压力大于1.3MPa(空调压力传感器电压达2V);

4) 点火开关关闭且发动机冷却液温度为140℃。

PCM 控制散热风扇低速运转时,其C1-6 脚为低电平,为继电器12 提供接地回路,继电器12 工作,此时左、右2 个风扇

串联,每个风扇的工作电压为供电电压的一半,2 个风扇同时低速运转。电流路径为:熔丝6(40A)→继电器12触点(87-30)→左侧风扇→继电器9的常闭触点(30-87A)→右侧风扇→结点S105→搭铁点G117。

2. 风扇高速电路分析

在以下情况下,PCM 控制散热器风扇高速运转:

1) 发动机冷却液温度超过110℃;

2) 空调制冷压力大于1.67MPa(空调压力传感器电压达2.5V) 。PCM 控制散热风扇高速运转时,其C1-6 脚和C1-5 脚为低电平,为继电器9、10 和12 提供接地回路,此时左、右2 个风扇并联,每个风扇都是单独的接地通路,因而2 个风扇高速运转。

左侧风扇电流路径为:保险丝6(40A)→继电器12 触点(87-30)→左侧风扇→继电器9 的常开触点(30 -87)→结点S105 →搭铁点G117。

右侧风扇电流路径为:保险丝21(15A)→继电器10 触点(30-87)→右侧风扇→结点S105→搭铁点G117。

在用TECH2 驱动风扇高速运转的同时,用万用表电压挡测量插头C105 发动机线束侧的浅蓝色线与接地间的电压为12V ,测量灰色线与接地间电压为9V(正常为0V) ,说明灰色线(532 电路) 搭铁不良。试更换继电器9,更换后故障依旧。拆下继电器盒,拆下插头,发现C11 端子严重烧蚀,从插座中脱落下来一段线,灰色线的线皮已熔化,继电器盒及相应插脚已烧蚀变形。打磨、清理并固定继电器盒背面的插座和端子后装复,用TECH2 驱动,检查左侧风扇高速旋转正常,但用手放在左侧风扇后面感觉风量比右侧风扇小,仔细检查发现左侧向前吹风,而不是向后吸。进一步检查线路,发现风扇线束(风扇小的线束)

中棕色线与蓝色线对调了,造成左侧风扇反转,汽车向前行驶时使风扇的运转阻力增大,电流增大,烧损了风扇线束插头及继电器盒等部件。

规则。估计原修理工将导线接反的原因可能是此线束中2 根线切断后,再连接时,因导线的颜色已退去,不易区分,于是修理工想当然地认为2 个风扇的旋转方向相同,按右侧风扇的旋转方向连接了左侧风扇线束,对别克轿车而言,这样恰好是接反了。

出现以上修理失误,是因为原修理工对别克轿车风扇的控制特点及工作原理不了解所致,下面对别克轿车冷却风扇的控制特点及维修方法做一个简单介绍。

在检修别克轿车冷却风扇控制电路时,应注意几个特点:一是开空调后,冷却风扇并不一定低速运转,是否低速运转取决于当时的冷却液温度(大于50℃) 和空调系统高压侧压力(大于

1.30MPa) 。二是风扇在符合高速运转条件时,必须先使2 个风扇低速运转3s ,然后再接通2 个风扇的高速。这个3s 延时的目的就是防止其超载。如果我们用TECH2 从静止直接驱动冷却风扇高速运转,PCM 先是控制继电器12 工作,2 个风扇串联,低速运转3s 后,继电器9和10 才工作,2 个风扇并联,同时高速运转,这一过程非常明显。三是为了减小2 个风扇运转时的噪声与振动,左、右2 个风扇的旋转方向是相反的,但因2 个风扇叶片的角度方向相反,故风向是相同的,更换风扇叶片时,如果左、右风扇叶片装反,会造成严重的运转噪声和振动,这在维修中时有发生,修理人员在维修过程中应注意。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继

电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一

车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现

已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号

在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的根本原因就是日光传感器短路的问题。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显

示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针

的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我

相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的根本原因就是日光传感器短路的问题。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口

只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与

GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应

的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装

在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的根本原因就是日光传感器短路的问题。

接车后连接丰田专用诊断仪DST-II ,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继电器信号一直处于OFF 状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。

如图1所示,同时按下空调控制面板的AUTO 开关和进气控制开关,将点火开关拧至ON ,控制面板内的所有的运行显示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧) 电路故障;24-日光传感器(驾驶员侧) 电路故障;32-进气口(风挡位臵) 传感器电路故障;33-模式(风挡位臵) 传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。

客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。

根据出现多个故障码且不能清除,初步判断主要原因可能

有3种:①传感器的共用电源或接地电路故障; ②传感器或其电路故障; ③A/C控制面板总成(与放大器做成一体) 内部集成电路故障。

首先,对A/C控制面板总成的主要工作电源及搭铁端子进行检测,各端子检测结果都在正常范围。

室内温度在30℃时,室内温度传感器端子电压为1.8V ,蒸发器温度传感器端子电压1.2V ,都在正常范围内。为什么电压正常还报故障码呢? 由于很难找到与本车型号一致的A/C控制面板总成,把本车型号为-的A/C控制面板总成,安装在同一车型A/C控制面板总成型号为-的车辆上,故障码全部可以清除,各伺服电机工作正常,只是压缩机不能工作。通过两种不同型号的A/C控制面板总成电路图可以看出,两者唯一的区别就是压缩机控制条件不同。虽然压缩机不能工作,但其它功能可以恢复正常,故障代码可以清除,至少不能确定故障车辆的A/C控制面板总成就已经损坏。

将故障车辆仪表台拆下,对空调系统线束进行检查。根据电路图2,检测到传感器及伺服电机共用接地端子SG(C17)端子时,发现在关闭点火开关的情况下,SG 端子与车身接地导通,电阻只为0.8Ω;打开点火开关,SG(C17)端子与车身接地导通,电阻却为40Ω。那为什么电阻会有如此大变化呢? 从A/C控制面板总成电路板上可以测得SG(C17)端子与GND(A23-6)车身接地端子直接连接在一起,是电脑内部搭铁点。直接给SG 端子跨接搭铁线,打开点火开关电阻变为6Ω,说明是A/C面板控制器与其连接插头虚接不实。对该端子进行处理,打开空调开关,伺服电机工作正常,压缩机也能正常运转。

故障端子处理后,重新安装仪表台,再次打开空调开关,

压缩机又不运转了,故障为何又重现了呢? 不安装仪表台时,压缩机工作正常,安装仪表台后,压缩机就不工作。拆装仪表台哪里有和空调系统有联系的呢? 经分析,只有日光传感器在拆下仪表台后是没有与A/C控制面板总成连接的,再次拔下日光传感器连接线,“啪”的一声,压缩机电磁离合器吸合了。用万用表检测日光传感器端子侧5号端子有12.5V 电压(如图3) ,4号端子接地,1号端子1.11V 电压,都在正常范围内; 测得2号端子有10.55V 电压,正常在0.8~3.1V 之间,拔下日光传感器连接器插头,用万用表检测日光传感器2号端子与5号端子发现已经短路。由于2号端子电压过高,A/C控制面板总成不能处理该信号,而使其处于保护状态。更换日光传感器,经多次试车,故障没有出现。

维修小结

该故障因SG(C17)端子连接不良,造成电阻过大的现象,应是其他维修人员检测线路时,往该端子内插入类似于大头针的工具造成的。建议在维修过程中,当遇到多个故障代码同时出现,首先要考虑其电源、接地及线路的共用部分。

在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它。但恰好故障的根本原因,就是日光传感器短路的问题。假设日光传感器出现断路状况,它并不会影响压缩机的正常运转,只报出相应的故障代码,所以我们在维修中一定要按部就班一步一步检查,不要忽略任何可疑细节。

该车因存在多处故障点,历经了多家修理厂都未能查出故障原因,结果还人为造成了多处故障,如SG(C17)端子连接不良,电阻过大的现象。这说明很多维修技术人员在进行维修作业时,存在粗心大意、不懂乱修的问题。而本文作者在对这起

复杂的故障案例排除过程中,始终保持了清醒的头脑,从开始对空调ECU 元件性能的判断,到最终实际故障点的确认,整体的思路非常清晰。尤其值得表扬的是作者对整个故障排除流程的把控,在遇到问题时,进行缜密分析,没有出现随意更换零件的问题。

作者对故障码的处理方法非常到位,在了解了车辆的维修历史、读取了相应的故障码后,根据多故障码同时出现的现象,确定了故障的范围,为后面的维修打下了良好的基础。接着进行的有针对性的检测,发现空调ECU 的基础电压、传感器信号在正常范围。显然,作者在进行这项检查时,并没有深入到位,像SG(C17)端子连接不良,电阻过大的问题,并没有及时的检查出来,而是采用了更换零件验证的方式,间接验证了空调控制面板没有问题。接下来的检查,才发现了SG(C17)端子连接不良的问题。处理故障点后空调能够正常工作,作者本以为找到了故障点,但接下来的仪表板安装却将故障带回了原点。我相信,作者开始脑子里充满的肯定是认为控制面板有偶发性故障,但后来的理性分析,使作者考虑到了拆装仪表台前后的区别就是“阳光传感器”!

阳光传感器这个不起眼的“小家伙”的作用,就是给空调ECU 提供外界阳光强度的信号,使空调ECU 更精确地控制制冷系统的工作强度,从而提高空调的舒适度。阳光传感器安装在仪表板上侧,在空调系统AUTO 模式下,当日照量增加时,输出电压上升,空调ECU 控制制冷系统增加制冷量,提高室内的舒适度; 反之,当日照量减少时,输出电压下降,则降低空调的制冷强度,防止温度过低的情况出现。诚然也像作者总结的,在车间内维修时,光照强度较弱,日光传感器报故障代码是一种正常现象,在维修过程中,一般都会忽略它,但恰好故障的

根本原因就是日光传感器短路的问题。


相关内容

  • 别克昂科雷轿车用户手册01
  • ENCLAVE 轿 车 用 户 手 册 感谢您选择了上海通用汽车有限公司的产品,我们将一如既往地保证您驾车愉快,称心如意. 本手册应视作车辆的一个固有部分. 应在出售车辆时随车提供给下一位车主,让其掌握重要的操作.安全和保养信息. 在本车的开发与制造中采用了环保材料和再生材料.而且,本车的制造方法也 ...

  • 汽车自动变速器系统维修实例精选及剖析
  • 汽车自动变速器系统维修实例精选及剖析 第一章 汽车自动变速器系统分类及结构原理 一.汽车自动变速器系统分类 1.按结构和控制方式分类 2.按车辆的驱动方式分类 3.按自动变速器前进档的档位数分类 二.液力式行星齿轮自动变速器的结构原理 1.基本结构 2.基本工作原理 3.液力变矩器 4.单排行星齿轮 ...

  • 冷却系统的方面的毕业论文
  • 实 习 报 告 发动机冷却液温度异常的故障检修 姓 名 : 孙 鹏 专 业 班 级 : 汽车检测与维修技术08级通用班 实 习 单 位 : 沈阳一天合汽车服务有限公司 指 导 教 师 : 杨 连 福 完 成 日 期 : 2011年4月 摘 要 时间过的真快,转眼间大学的生活即将画上 句号.大学的身影 ...

  • 变压器运行规程
  • 110(66)kV-500kV油浸式变压器(电抗器)运行规范 国家电网公司 二○○五年三月 目 录 第一章 总则 第二章 引用标准 第三章 设备的验收 第四章 设备运行维护管理 第五章 运行巡视检查项目及要求 第六章 变压器负荷运行管理和处理要求 第七章 操作方法.程序及注意事项 第八章 缺陷管理及 ...

  • 汽车维护保养
  • 别克发动机维护 一. 简介 汽车是由各种零部件组成的机械.随着汽车行驶里程的增加,汽车技术状况发生变化,使用性能逐渐变差,并通过各种故障表现出来,直至汽车丧失工作能力.因此,掌握汽车技术状况变化规律,合理使用和及时维护汽车,确保技术状况良好,对延长汽车使用寿命有着重要作用. 发动机是汽车的核心,由于 ...

  • 循环水泵电机检修规程
  • 循环水泵电机 1.设备技术规范 我厂的循环水泵电机采用的是立式高压三相异步电动机,技术规范如下 型 号:YKKL3000-14/2150-1 额定电压:6000V 额定功率:3000KW 额定电流:354.9A 功率因数:0.87 额定转速:425r/min 绝缘等级:F 防护等级:IP44 冷却方 ...

  • 变压器常见故障及处理
  • 变压器常见故障及处理 变压器故障可分为内部故障和外部故障,内部故障是指变压器本体内部绝缘或绕组出现的故障,外部故障是指变压器辅助设备出现的故障.变压器常见的故障有:变压器过热.冷却装置故障.油位异常.轻瓦斯继电器动作.变压器跳闸和变压器的紧急停运.在变压器过热时应重点检查变压器是否过负荷,冷却装置是 ...

  • 电气运行规程-变压器
  • 第一章 变压器及附属设备规范 1.1 变压器规范 1.1.1 主变.厂高变.启动变规范 主变.厂高变分接头档数: 主变 高压 电压 电流 (V ) (A ) 厂高变 高压 电压 电流 (V ) (A ) 分 接% 分接位置 (档) 分接% 分接位置 (档) 2.5 额定 -2.5 -5 -7.5 2 ...

  • 动车组牵引电机检修及安全规则
  • 牵引变流器检修 1. 作业流程 拆卸.确认吹净,清洗.确认等 装配 2. 作业顺序 (1)拆卸,确认作业.卸下侧面盖罩,确认侧部配线的外观,将各部件编号记入调查书,清扫侧面,安装侧面盖罩,卸下底盖罩.梁,确认冷却,进行配线的绝缘,进行防尘处理,卸下冷却单元,对车辆侧进行防尘处理,清扫冷却单元的内部, ...