变电站内电压无功自动调节和控制

变电站内电压无功自动调节和控制

变电站内电压无功自动调节和控制,是通过站内智能设备实时采集电网各类模拟量和状态量参数,采用计算机自动控制技术、通信技术和数字信号处理技术,对电力系统电压、潮流状态的实时监测和估算预测实现自动调节主变压器分接头开关和投切补偿电容器,使变电站的母线电压和无功补偿满足电力系统安全运行和经济运行的需要。提高变电站电压合格率并降低网损,减轻值班人员劳动强度。

1 基本原理

1.1 变电站运行方式的变化对电压无功控制策略的影响

1.1.1 变电站运行方式的识别

(1) 完全分列运行。变电站高、中、低压侧母线均分开运行。

(2) 分列运行。变电站高、中、低压侧任一侧母线并列运行,其他母线分开运行。

(3) 并列运行。变电站高、中、低压侧任两侧母线并列运行。

信息请登陆:输配电设备网

1.1.2 不同运行方式下的电压无功控制策略

(1) 完全分列运行。各台变压器分接头可以在不同档位运行。各低压母线段电容器组分别进行循环投切。此时控制电压及无功定值各自分别选定,有功、无功功率为各自主变压器高压侧的有功、无功功率。

(2) 分列运行。各台变压器分接头可以在不同档位运行。变电站的有功、无功功率为各主变压器高压侧的有功、无功功率之和,所有电容器组应统一考虑进行循环投切,但需考虑每段母线电容器组的均衡投切。变压器分接头调节可以根据各变压器的电压目标进行分别控制。

(3) 并列运行。各台变压器分接头必须在相同档位运行。变电站的有功、无功功率为各主变压器高压侧的有功、无功功率之和,所有电容器组应统一考虑进行循环投切,但需考虑每段母线电容器组的均衡投切。并列运行时,并列母线的电压应选定一个电压值作为控制电压,并列主变压器的调整方式为联动调整,处于越限状态的主变压器作为主调,另一台主变压器作为从调,主调主变压器分接头成功动作后,再控制从调主变压器;若主调主变压器分接头动作未成功,将自动闭锁对从调主变压器的调节,并将主调主变压器分接头回调。

1.1.3 电压无功控制策略的优化

(1) 要考虑电容器组投切对变电站高压母线电压的影响,投入电容器组使母线电压升高,切除电容器组使母线电压降低。尽可能多利用电容器组投切控制,少进行变压器分接头调节来达到较好的控制效果。 信息来自:输配电设备网

(2) 电压无功控制策略的选择应避免进入循环振荡调节,即在不同区域由于采取不适合的调节控制策略而导致在两个不合格区域内振荡调节,对系统产生较大的影响同时对变电站内有载调压分接头和电容器组的频繁升降和投切造成设备损坏。

1.2 变电站电压无功控制的闭锁条件及要求

所谓电压无功控制的闭锁,是指VQC 装臵在变电站或系统异常情况下,能及

时停止自动调节。如果没有完善的闭锁或闭锁响应时间达不到运行要求,将会对变电站的安全运行带来严重威胁。

1.2.1 VQC闭锁条件

闭锁条件和要求要全面,VQC 闭锁需考虑以下几个方面:①继电保护动作(包括主变压器保护及电容器保护动作);②系统电压异常(过高或过低);③变压器过载;④电压断线;⑤电容器开关或主变压器分接头开关拒动;⑥电容器开关或主变压器分接头开关动作次数达到最大限值;⑦主变压器并列运行时的错档;⑧主变压器分接头开关的滑档;⑨主变压器、电容器检修或冷备用时的闭锁;⑩外部开关量闭锁分接头调节或电容器组投切。

1.2.2 闭锁响应时间的要求

对于VQC 闭锁的要求,各个不同的闭锁量响应时间要求不一样,如保护动作、主变压器开关滑档、TV 断线、外部开关量闭锁、系统电压异常等闭锁要求快速响应。针对某些VQC 的实现方式需要考虑VQC 闭锁的实时性问题,远方调节控制必须实现就地闭锁才能保证变电站电压无功控制的安全性。 信息请登陆:输配电设备网

1.3 系统对变电站电压无功控制的约束条件

(1) 系统在事故情况下或运行方式发生大的改变时应可靠闭锁变电站的电压无功控制功能。

(2) 变压器高压侧电压越限超过闭锁定值时应可靠闭锁变电站的电压无功控制功能。

(3) 变压器高压侧电压越限但未超过闭锁定值时,应调整VQC 控制策略以免使系统运行状况进一步恶化。

2 电压无功控制的实现方法

目前电力系统内变电站常用的电压无功控制的实现方法有3种:独立的VQC 装臵,基于站内通信实现的软件控制模式,基于调度系统和集控站的区域控制模式。

2.1 独立的VQC 装臵

变电站内装设独立的VQC 装臵目前是电力系统中实现电压无功控制的一种主要方式,它采用自身的交流采样和输入输出控制系统,多CPU 分布式模块化的体系结构(见图1),对应于变电站内的主变压器和相应的电容器组设有独立的控制单元,另外还有一个主控单元负责管理主变压器控制单元的运行与通信。收集其采集的信息(电气参数和开关量状态),根据运行方式的变化及系统电压无功的要求选择控制策略,向主变压器控制单元发出控制命令。主控单元还负责数据统计、事件生成和打印、与上位计算机通信等工作,同时主变压器控制单元应具有瞬时反应系统各类电气参数开关量状态变化的能力,就地判别是否闭锁主控单元下达的控制命令,并实时监视和记录系统电压合格率和谐波状况。

图1 独

立VQC 装臵多CPU 分布模块化结构原理图

2.2 基于站内通信的软件控制模式

基于站内通信的软件控制模式的结构原理见图2,其功能实现是在变电站的智能RTU模块或后台监控系统中嵌入VQC控制软件。通过站内通信网采集各类电气参数和开关量的状态,由控制软件模块进行综合判别,选择合适的控制策略,由站内通信网下达遥控命令至监控系统中的各单元测控装臵实现对主变压器有载调压分接开关的升降和电容器组的投切控制。

图2 软

件控制模块式的结构原理图

表1 3种电压无功控制实现方式的比较

信息请登陆:输配电设备网

2.3 基于调度系统或集控站的区域控制模式

基于调度系统或集控站的区域电压无功控制模式在一些省市电力网中得到了应用,其功能实现是在调度系统或集控站的SCADA 系统或EMS 系统软件中设臵一个电压无功控制的高级应用软件。根据系统高级应用软件的潮流计算和状态估计得出各个变电站节点的电压和无功范围,将系统收集的各变电站的实际电气参数和开关量状态与系统安全经济运行要求的电压无功范围进行比较,给出每个变电站的控制策略,通过远动通道下达控制分接头升降及电容器投切命令。该模式由于考虑了全网的运行方式和潮流变化,并可以做到分层分级对电压无功进行优化控制,即先调节控制枢纽的节点变电站的电压无功,再调节未端变电站的电压无功,从根本上可以改变由于各个局部变电站的独立电压无功控制影响全网电压无功的优化。

3 电压无功控制的发展方向

电力系统是一个复杂的动态关联系统,其潮流是动态变化并相互关联的。变电站内变压器分接开关在某个范围内的调整将影响无功功率的交换,进而影响电网无功潮流的分布和节点电压的变化。因此,如果某一地区因为节点电压低依靠变压器分接头向同一方向调整,将引起无功功率在该地区的大转移,造成系统无功波动,对系统电压也会造成严重影响。这也是单个变电站独立实行电压无功控制达到局部优化但影响全局的弊端。

要解决上述弊端,必须考虑全局的优化,将各个变电站点采集的电压无功数据和控制结果送至调度中心或集控站的主机,依据实时的潮流进行状态估计,确定各个变电站节点电压和无功要求,对全网的电压无功进行分层分级综合调整。 基于调度系统或集控站的区域集中控制模式是维护系统电压正常,实现无功优化综合控制,提高系统运行可靠性和经济性的最佳方案,应要求调度中心必须具有符合实际的电压和无功实时优化控制软件,各变电站有可靠的通道和智能控制执行单元。另外一个地区调度系统有几百甚至上千个变电站的运行方式、运行参数、分接头当前位臵、电容器状态以及各变电站低压侧母线的电压水平、负载情况等诸多信息均输入调度中心计算机,必然会造成电压无功控制软件复杂化和控制的实时性变得很差,因此实现分层分级和分散就地的关联控制是全网电压无功控制的发展方向。

全网电压无功控制有2层意义:①为了电网的安全稳定运行必须确保系统内各发电厂和枢纽变电站的电压稳定性。②为了电网的经济运行、降低网损,必须

实现全网的无功优化和就地平衡。应该认识到电压无功控制是正常稳定运行状态下的调节控制,在事故状态下这样的调节控制反而会恶化系统的稳定,必须要闭锁。同时电压无功控制是一个全网关联的控制问题,应在考虑全网优化的前提下实现区域或变电站的局部优化。因此全网的电压无功控制是一个分层分级、分散就地的网络关联控制系统,见图3。

图3 分层分级电压无功控制结构图

所谓分层分级是指全网根据调度要求进行分区分片控制,省级调度应站在全网安全稳定和经济运行的高度,调度各发电厂和枢纽变电站的电压和无功输出水平,并要求各地区调度合理调度实现就地无功平衡,控制与系统电网的无功交换。地区调度负责对区域高压变电站和集控站的控制,集控站和县级调度负责对低一级电压等级变电站的控制。系统在发生大的运行方式和潮流改变时应闭锁各级电压无功控制功能,由调度主站先控制各发电厂和高压枢纽变电站的电压无功状态,再由地区调度、县级调度或集控站控制下一级变电站或直供变电站的电压无功状态。

所谓分层分级和分散就地的关联控制是指在电力系统正常运行时,由分散安装在各个变电站的电压无功控制装臵或控制软件根据系统调度端下达的电压无功范围进行自动调控,调节控制范围和定值是从电网的安全稳定和经济运行要求出发,事先由调度中心的电压无功优化程序计算好下达给各变电站。在系统运行方式或潮流发生较大改变以及事故情况时,调度中心给各变电站发出闭锁自动控制的命令,由调度中心直接控制枢纽变电站的电压无功,待高压电网运行稳定后,由调度中心修改各下层变电站的电压无功定值范围下达至变电站,满足系统运行方式变化后的新要求。

分层分级和分散就地的关联控制优点在于:在系统正常运行时,可以由分散在各变电站的电压无功控制装臵或软件自动化执行对各受控变电站的电压无功调控,实现功能分散、责任分散、危险分散;在紧急情况下调度中心执行应急程序,闭锁下级调度或集控站以及各变电站的自动调控功能,由调度中心直接控制或下达电压无功系统参数至枢纽变电站,可以从根本上保证全网系统运行的安全性和经济性。为达到分层分级和分散就地的关联控制的目的,要求各变电站需装设执行分散就地控制任务的装臵或软件(VQC装臵或软件),并且应具有对受控变电站状态的分析、判别和控制功能,以及较强的通信能力和手段。正常运行情况下,VQC装臵或软件向调度报告控制结果和各类参数。同时接受上级调度下达的命令和参数,自动修改或调整定值或停止执行自动调控,成为接收调度下达调控命令的智能执行装臵。由于此类分散就地控制装臵或软件(VQC装臵或软件)能够根据变电站不同的运行方式和工况选择最优的局部调控策略,可以自动判别运行方式和计算投切电容器及调节分接头可能发生的变化的配合问题。因此分层分级和分散就地的关联控制兼顾了全局优化和局部优化问题。

4 结论

经过以上分析,笔者认为在当前变电站综合自动化系统中应用独立的VQC 装臵或软件已取得了一定的经验,在区域电压无功优化理论和实践发展进一步成熟后,通过调度中心控制软件及变电站独立的VQC 装臵和软件实现分层分级和分

散就地的关联控制是一种可行的解决方案。

变电站内电压无功自动调节和控制

变电站内电压无功自动调节和控制,是通过站内智能设备实时采集电网各类模拟量和状态量参数,采用计算机自动控制技术、通信技术和数字信号处理技术,对电力系统电压、潮流状态的实时监测和估算预测实现自动调节主变压器分接头开关和投切补偿电容器,使变电站的母线电压和无功补偿满足电力系统安全运行和经济运行的需要。提高变电站电压合格率并降低网损,减轻值班人员劳动强度。

1 基本原理

1.1 变电站运行方式的变化对电压无功控制策略的影响

1.1.1 变电站运行方式的识别

(1) 完全分列运行。变电站高、中、低压侧母线均分开运行。

(2) 分列运行。变电站高、中、低压侧任一侧母线并列运行,其他母线分开运行。

(3) 并列运行。变电站高、中、低压侧任两侧母线并列运行。

信息请登陆:输配电设备网

1.1.2 不同运行方式下的电压无功控制策略

(1) 完全分列运行。各台变压器分接头可以在不同档位运行。各低压母线段电容器组分别进行循环投切。此时控制电压及无功定值各自分别选定,有功、无功功率为各自主变压器高压侧的有功、无功功率。

(2) 分列运行。各台变压器分接头可以在不同档位运行。变电站的有功、无功功率为各主变压器高压侧的有功、无功功率之和,所有电容器组应统一考虑进行循环投切,但需考虑每段母线电容器组的均衡投切。变压器分接头调节可以根据各变压器的电压目标进行分别控制。

(3) 并列运行。各台变压器分接头必须在相同档位运行。变电站的有功、无功功率为各主变压器高压侧的有功、无功功率之和,所有电容器组应统一考虑进行循环投切,但需考虑每段母线电容器组的均衡投切。并列运行时,并列母线的电压应选定一个电压值作为控制电压,并列主变压器的调整方式为联动调整,处于越限状态的主变压器作为主调,另一台主变压器作为从调,主调主变压器分接头成功动作后,再控制从调主变压器;若主调主变压器分接头动作未成功,将自动闭锁对从调主变压器的调节,并将主调主变压器分接头回调。

1.1.3 电压无功控制策略的优化

(1) 要考虑电容器组投切对变电站高压母线电压的影响,投入电容器组使母线电压升高,切除电容器组使母线电压降低。尽可能多利用电容器组投切控制,少进行变压器分接头调节来达到较好的控制效果。 信息来自:输配电设备网

(2) 电压无功控制策略的选择应避免进入循环振荡调节,即在不同区域由于采取不适合的调节控制策略而导致在两个不合格区域内振荡调节,对系统产生较大的影响同时对变电站内有载调压分接头和电容器组的频繁升降和投切造成设备损坏。

1.2 变电站电压无功控制的闭锁条件及要求

所谓电压无功控制的闭锁,是指VQC 装臵在变电站或系统异常情况下,能及

时停止自动调节。如果没有完善的闭锁或闭锁响应时间达不到运行要求,将会对变电站的安全运行带来严重威胁。

1.2.1 VQC闭锁条件

闭锁条件和要求要全面,VQC 闭锁需考虑以下几个方面:①继电保护动作(包括主变压器保护及电容器保护动作);②系统电压异常(过高或过低);③变压器过载;④电压断线;⑤电容器开关或主变压器分接头开关拒动;⑥电容器开关或主变压器分接头开关动作次数达到最大限值;⑦主变压器并列运行时的错档;⑧主变压器分接头开关的滑档;⑨主变压器、电容器检修或冷备用时的闭锁;⑩外部开关量闭锁分接头调节或电容器组投切。

1.2.2 闭锁响应时间的要求

对于VQC 闭锁的要求,各个不同的闭锁量响应时间要求不一样,如保护动作、主变压器开关滑档、TV 断线、外部开关量闭锁、系统电压异常等闭锁要求快速响应。针对某些VQC 的实现方式需要考虑VQC 闭锁的实时性问题,远方调节控制必须实现就地闭锁才能保证变电站电压无功控制的安全性。 信息请登陆:输配电设备网

1.3 系统对变电站电压无功控制的约束条件

(1) 系统在事故情况下或运行方式发生大的改变时应可靠闭锁变电站的电压无功控制功能。

(2) 变压器高压侧电压越限超过闭锁定值时应可靠闭锁变电站的电压无功控制功能。

(3) 变压器高压侧电压越限但未超过闭锁定值时,应调整VQC 控制策略以免使系统运行状况进一步恶化。

2 电压无功控制的实现方法

目前电力系统内变电站常用的电压无功控制的实现方法有3种:独立的VQC 装臵,基于站内通信实现的软件控制模式,基于调度系统和集控站的区域控制模式。

2.1 独立的VQC 装臵

变电站内装设独立的VQC 装臵目前是电力系统中实现电压无功控制的一种主要方式,它采用自身的交流采样和输入输出控制系统,多CPU 分布式模块化的体系结构(见图1),对应于变电站内的主变压器和相应的电容器组设有独立的控制单元,另外还有一个主控单元负责管理主变压器控制单元的运行与通信。收集其采集的信息(电气参数和开关量状态),根据运行方式的变化及系统电压无功的要求选择控制策略,向主变压器控制单元发出控制命令。主控单元还负责数据统计、事件生成和打印、与上位计算机通信等工作,同时主变压器控制单元应具有瞬时反应系统各类电气参数开关量状态变化的能力,就地判别是否闭锁主控单元下达的控制命令,并实时监视和记录系统电压合格率和谐波状况。

图1 独

立VQC 装臵多CPU 分布模块化结构原理图

2.2 基于站内通信的软件控制模式

基于站内通信的软件控制模式的结构原理见图2,其功能实现是在变电站的智能RTU模块或后台监控系统中嵌入VQC控制软件。通过站内通信网采集各类电气参数和开关量的状态,由控制软件模块进行综合判别,选择合适的控制策略,由站内通信网下达遥控命令至监控系统中的各单元测控装臵实现对主变压器有载调压分接开关的升降和电容器组的投切控制。

图2 软

件控制模块式的结构原理图

表1 3种电压无功控制实现方式的比较

信息请登陆:输配电设备网

2.3 基于调度系统或集控站的区域控制模式

基于调度系统或集控站的区域电压无功控制模式在一些省市电力网中得到了应用,其功能实现是在调度系统或集控站的SCADA 系统或EMS 系统软件中设臵一个电压无功控制的高级应用软件。根据系统高级应用软件的潮流计算和状态估计得出各个变电站节点的电压和无功范围,将系统收集的各变电站的实际电气参数和开关量状态与系统安全经济运行要求的电压无功范围进行比较,给出每个变电站的控制策略,通过远动通道下达控制分接头升降及电容器投切命令。该模式由于考虑了全网的运行方式和潮流变化,并可以做到分层分级对电压无功进行优化控制,即先调节控制枢纽的节点变电站的电压无功,再调节未端变电站的电压无功,从根本上可以改变由于各个局部变电站的独立电压无功控制影响全网电压无功的优化。

3 电压无功控制的发展方向

电力系统是一个复杂的动态关联系统,其潮流是动态变化并相互关联的。变电站内变压器分接开关在某个范围内的调整将影响无功功率的交换,进而影响电网无功潮流的分布和节点电压的变化。因此,如果某一地区因为节点电压低依靠变压器分接头向同一方向调整,将引起无功功率在该地区的大转移,造成系统无功波动,对系统电压也会造成严重影响。这也是单个变电站独立实行电压无功控制达到局部优化但影响全局的弊端。

要解决上述弊端,必须考虑全局的优化,将各个变电站点采集的电压无功数据和控制结果送至调度中心或集控站的主机,依据实时的潮流进行状态估计,确定各个变电站节点电压和无功要求,对全网的电压无功进行分层分级综合调整。 基于调度系统或集控站的区域集中控制模式是维护系统电压正常,实现无功优化综合控制,提高系统运行可靠性和经济性的最佳方案,应要求调度中心必须具有符合实际的电压和无功实时优化控制软件,各变电站有可靠的通道和智能控制执行单元。另外一个地区调度系统有几百甚至上千个变电站的运行方式、运行参数、分接头当前位臵、电容器状态以及各变电站低压侧母线的电压水平、负载情况等诸多信息均输入调度中心计算机,必然会造成电压无功控制软件复杂化和控制的实时性变得很差,因此实现分层分级和分散就地的关联控制是全网电压无功控制的发展方向。

全网电压无功控制有2层意义:①为了电网的安全稳定运行必须确保系统内各发电厂和枢纽变电站的电压稳定性。②为了电网的经济运行、降低网损,必须

实现全网的无功优化和就地平衡。应该认识到电压无功控制是正常稳定运行状态下的调节控制,在事故状态下这样的调节控制反而会恶化系统的稳定,必须要闭锁。同时电压无功控制是一个全网关联的控制问题,应在考虑全网优化的前提下实现区域或变电站的局部优化。因此全网的电压无功控制是一个分层分级、分散就地的网络关联控制系统,见图3。

图3 分层分级电压无功控制结构图

所谓分层分级是指全网根据调度要求进行分区分片控制,省级调度应站在全网安全稳定和经济运行的高度,调度各发电厂和枢纽变电站的电压和无功输出水平,并要求各地区调度合理调度实现就地无功平衡,控制与系统电网的无功交换。地区调度负责对区域高压变电站和集控站的控制,集控站和县级调度负责对低一级电压等级变电站的控制。系统在发生大的运行方式和潮流改变时应闭锁各级电压无功控制功能,由调度主站先控制各发电厂和高压枢纽变电站的电压无功状态,再由地区调度、县级调度或集控站控制下一级变电站或直供变电站的电压无功状态。

所谓分层分级和分散就地的关联控制是指在电力系统正常运行时,由分散安装在各个变电站的电压无功控制装臵或控制软件根据系统调度端下达的电压无功范围进行自动调控,调节控制范围和定值是从电网的安全稳定和经济运行要求出发,事先由调度中心的电压无功优化程序计算好下达给各变电站。在系统运行方式或潮流发生较大改变以及事故情况时,调度中心给各变电站发出闭锁自动控制的命令,由调度中心直接控制枢纽变电站的电压无功,待高压电网运行稳定后,由调度中心修改各下层变电站的电压无功定值范围下达至变电站,满足系统运行方式变化后的新要求。

分层分级和分散就地的关联控制优点在于:在系统正常运行时,可以由分散在各变电站的电压无功控制装臵或软件自动化执行对各受控变电站的电压无功调控,实现功能分散、责任分散、危险分散;在紧急情况下调度中心执行应急程序,闭锁下级调度或集控站以及各变电站的自动调控功能,由调度中心直接控制或下达电压无功系统参数至枢纽变电站,可以从根本上保证全网系统运行的安全性和经济性。为达到分层分级和分散就地的关联控制的目的,要求各变电站需装设执行分散就地控制任务的装臵或软件(VQC装臵或软件),并且应具有对受控变电站状态的分析、判别和控制功能,以及较强的通信能力和手段。正常运行情况下,VQC装臵或软件向调度报告控制结果和各类参数。同时接受上级调度下达的命令和参数,自动修改或调整定值或停止执行自动调控,成为接收调度下达调控命令的智能执行装臵。由于此类分散就地控制装臵或软件(VQC装臵或软件)能够根据变电站不同的运行方式和工况选择最优的局部调控策略,可以自动判别运行方式和计算投切电容器及调节分接头可能发生的变化的配合问题。因此分层分级和分散就地的关联控制兼顾了全局优化和局部优化问题。

4 结论

经过以上分析,笔者认为在当前变电站综合自动化系统中应用独立的VQC 装臵或软件已取得了一定的经验,在区域电压无功优化理论和实践发展进一步成熟后,通过调度中心控制软件及变电站独立的VQC 装臵和软件实现分层分级和分

散就地的关联控制是一种可行的解决方案。


相关内容

  • 大渡河沙湾水电站AVC功能设计及其实现
  • 大渡河沙湾水电站AVC功能设计及实现 陈胜祥1,颜现波2,郑勇1 (1.四川圣达水电开发有限公司,四川 乐山 614900;2. 北京中水科水电科技开发有限公司,北京 海淀 100038) 摘 要:电压质量是衡量电能质量的主要指标之一,自动电压控制(AVC)是水电站安全运行和经济运行的必要工具.根据 ...

  • 光伏发电站无功补偿技术规范(征求意见稿)
  • ICS 中华人民共和国国家标准 光伏发电站无功补偿技术规范 Technical specification for reactive power compensation of PV power station (征求意见稿) 中华人民共和国国家质量监督检验检疫总局 发 布 中国国家标准化管理委员会 ...

  • 变电站电压无功控制系统的设计
  • 科技信息.电力与能源o SCIENCE&TECHNOLOGYINFORMATION 2009年第"期 变电站电压无功控制系统的设计 田延娟1-2王芳2张波2 (1.山东大学山东济南250014:2.山东电子职业技术学院电子系山东济南250014) [摘妻]电网无功合理控制是实现电网 ...

  • 南方电网光伏发电站无功补偿及电压控制技术规范
  • Q/CSG 中国南方电网有限责任公司企业标准 南方电网光伏发电站无功补偿及电压控制 技术规范 中国南方电网有限责任公司 发 布 目 次 前言 ............................................................................. I ...

  • 光伏发电站接入电网技术规范
  • Q/CSG 中 国 南 方 电 网 有 限 责 任 公 司 企 业 标 准 光伏发电站接入电网技术规范 Technical rule for photovoltaic power station connected to power grid 中 国 南 方 电 网 有 限 责 任 公 司 发 布 ...

  • 基于51单片机的全自动无功补偿装置的设计_secret
  • 目录 摘要 Abstract ............................................................................................................................. 第一章 绪论 第二 ...

  • 磁控电抗器产品介绍
  • MSVC成套装置(磁控电抗器) 产品介绍 北京国能子金电气技术有限公司 目 录 前 言..........................................................................................................1 ...

  • 节能与电能质量监测治理技术评估报告1217
  • 节能与电能质量监测治理技术评估报告(初稿) 1 技术基本情况 研究背景 随着国民经济的高速发展,对能源的需求也不断增长.而石油.煤炭等不可再生资源却日渐枯竭,因此如何实现节能和高效利用现有能源已成为当务之急.作为一种适用范围最广.使用最方便的清洁能源,电能的可持续发展已成为国民经济持续健康发展的重要 ...

  • 风电场接入电网技术规定
  • 1. 风电场有功功率 1.1 基本要求 风电场具有功功率调节能力,并能根据电网调度部门指令控制其有功功率输出.为了实现对风电场有功功率的控制,风电场需安装有功功率控制系统,能够接收并自动执行调度部门远方发送的有功出力控制信号,确保风电场最大输出功率及功率变化率不超过电网调度部门的给定值. 1.2 最 ...