科学家尝试破解基因增强子之谜

2015-07-20 05:47:48

基因可能是细胞核中的主角,但如果没有强有力的配角阵容,它们也将永远无法发光。随着DNA调控剂(增强子)的延展,将帮助基因在正确的时间和位置启动。

科学探索

   图片来源:《科学》

基因可能是细胞核中的主角,但如果没有强有力的配角阵容,它们也将永远无法发光。随着DNA调控剂(增强子)的延展,将帮助基因在正确的时间和位置启动。尽管研究人员像狗仔队追踪好莱坞明星一样详细调查了基因,增强子依然身处幕后,其工作原理仍然成谜。不过,近日举行的遗传学会议可能将改变现状:研究人员描述了这些安静的调停者在哪里以及如何发挥作用。

一个研究小组展示了增强子如何维持在对其他信号敏感的正确水平上,以便其仅在正确的时间和位置打开基因。其他人则探索了细胞如何包裹基因及其增强子,以便它们能恰当合作以及DNA如何形成环路,从而将正确的增强子带给靶基因。这些进展有助于探索基于这些调控因子的治疗策略,关闭生病基因和调大健康基因。

“我们已经讨论了(增强子)很长时间。”瑞士巴塞尔弗雷德里希米歇尔生物医学研究所所长Susan Gasser说,“但现在我们才真正开始理解它们。”

当转录因子和其他蛋白质绑定在增强子DNA的特殊位置时,增强子就会打开基因。通过胡乱修补一个增强子的序列,美国加州大学伯克利分校的Michael Levine和同事发现,原则上,增强子可能对能激活自身的信号更灵敏。他们研究了Otx基因的增强子,该基因作用于神经系统发育。

这种Otx增强子能吸引两个蛋白质,每个都使用一个不同的4碱基序列作为着陆点。在Levine的实验室,Emma Farley随机改变了这些蛋白质结合位置外面的碱基。她制作了Otx增强子的约100万个变种,并将每个变种与充当身份识别“条码”的其他序列和一个报告基因连接。一种名为海鞘的海洋无脊椎动物可以仅通过温和电击提取DNA,因此研究人员能容易地制作数千个与各种增强子结合的转基因海鞘胚胎。

他们发现,增强子能出现相当多的变化,并仍能起作用:约10万变体产生了可检测的增强子活性,并且与原始序列相比,2万变体表现出了更强或更一致的表达。Levine报告指出,这2万增强子变体中最活跃的拥有一个特殊的DNA模式——每个蛋白质结合点的两侧有相同的碱基。

最初,他对原始Otx增强子没有相同且似乎是最佳的侧翼碱基感到迷惑不解。但进一步研究显示,“最佳”增强子实际并非最好:它会在错误组织中不适当地打开Otx。Levine表示,在自然界,“这个增强子是故意的”。“(结合)水平和特异性之间存在一个交易。”他指出,可能会被离群蛋白质分子激活的一触即发的开关,当其应该开启时却无法开启,将为生物体带来风险。

但细胞还有第二个策略,以确保增强子适当运行:将它们与目标基因紧密地“打包”在一起。3年前,马萨诸塞大学医学院生物学家Job Dekker等人报告称,有证据显示,增强子—基因连接并非无序分散的,而是出现在“拓扑结合网络”(TAD)中。他们预计,每个TAD包含少量基因和几十个增强子。

不过,这一理论面临诸多质疑,于是Dekker研究了CFTR基因。在囊胞性纤维症患者体内,这一基因会发生突变。在该团队研究的5种细胞类型中,编码一个离子通道的该基因,会与不同的增强子相互作用。在每种情况下,增强子和基因全被发现于染色体相同的延伸位置。

Dekker 等人表示,TAD可能是限制基因暴露给错误增强子引发的伪激活作用的方式之一,或者它们将有助于确保需要工作的基因同步工作。Levine指出,无论哪种方式,逐渐清晰的是,TAD“是基因组结构和功能的最基本单元”。

这仍留下了一个几何学问题:在一个TAD中,增强子和目标基因通常相距一定距离,那么它们是如何聚到一起的?答案似乎是,在TAD 内的DNA环路会将增强子和基因并置。例如,Dekker发现,5个被研究的细胞类型中有3个能激活CFTR,但是激活作用发生在不同时间和不同条件下,并且形成不同的环路将适当增强子带给基因。

另外,费城儿童医院生物学家Gerd Blobel也报告了其利用修饰基因—增强子环路治疗镰状细胞性贫血的进展。在这种疾病中,产生携带氧气的蛋白质络合物血红蛋白的一个亚组的基因存在缺陷,从而引发红细胞畸形。但身体内还有另一种仅在胎儿发育期活跃的血红蛋白。而数个治疗策略主要致力于提高胎儿血红蛋白的产生。

去年,Blobel研究组报告了他们通过更改名为LCR的增强子与成人血红蛋白基因相连接的环路,下调成人血红蛋白的产生和推动胎儿血红蛋白的增加。Blobel 解释道:“这不是传统的基因疗法和基因修正,而是编辑基因组的折叠方式。”

Blobel在会上表示,与激活胎儿血红蛋白的药物治疗相比,该疗法毒性较低。目前,该研究小组已经开始在携带人类球蛋白基因的转基因小鼠体内测试该方法。但要消除人们对增强子回路重要性的质疑,该研究还有很长的路要走。“我们已经花费数年时间试图证实环路真实存在。”宾夕法尼亚大学分子生物学家Kenneth Zaret说。

来源:中国科学报

2015-07-20 05:47:48

基因可能是细胞核中的主角,但如果没有强有力的配角阵容,它们也将永远无法发光。随着DNA调控剂(增强子)的延展,将帮助基因在正确的时间和位置启动。

科学探索

   图片来源:《科学》

基因可能是细胞核中的主角,但如果没有强有力的配角阵容,它们也将永远无法发光。随着DNA调控剂(增强子)的延展,将帮助基因在正确的时间和位置启动。尽管研究人员像狗仔队追踪好莱坞明星一样详细调查了基因,增强子依然身处幕后,其工作原理仍然成谜。不过,近日举行的遗传学会议可能将改变现状:研究人员描述了这些安静的调停者在哪里以及如何发挥作用。

一个研究小组展示了增强子如何维持在对其他信号敏感的正确水平上,以便其仅在正确的时间和位置打开基因。其他人则探索了细胞如何包裹基因及其增强子,以便它们能恰当合作以及DNA如何形成环路,从而将正确的增强子带给靶基因。这些进展有助于探索基于这些调控因子的治疗策略,关闭生病基因和调大健康基因。

“我们已经讨论了(增强子)很长时间。”瑞士巴塞尔弗雷德里希米歇尔生物医学研究所所长Susan Gasser说,“但现在我们才真正开始理解它们。”

当转录因子和其他蛋白质绑定在增强子DNA的特殊位置时,增强子就会打开基因。通过胡乱修补一个增强子的序列,美国加州大学伯克利分校的Michael Levine和同事发现,原则上,增强子可能对能激活自身的信号更灵敏。他们研究了Otx基因的增强子,该基因作用于神经系统发育。

这种Otx增强子能吸引两个蛋白质,每个都使用一个不同的4碱基序列作为着陆点。在Levine的实验室,Emma Farley随机改变了这些蛋白质结合位置外面的碱基。她制作了Otx增强子的约100万个变种,并将每个变种与充当身份识别“条码”的其他序列和一个报告基因连接。一种名为海鞘的海洋无脊椎动物可以仅通过温和电击提取DNA,因此研究人员能容易地制作数千个与各种增强子结合的转基因海鞘胚胎。

他们发现,增强子能出现相当多的变化,并仍能起作用:约10万变体产生了可检测的增强子活性,并且与原始序列相比,2万变体表现出了更强或更一致的表达。Levine报告指出,这2万增强子变体中最活跃的拥有一个特殊的DNA模式——每个蛋白质结合点的两侧有相同的碱基。

最初,他对原始Otx增强子没有相同且似乎是最佳的侧翼碱基感到迷惑不解。但进一步研究显示,“最佳”增强子实际并非最好:它会在错误组织中不适当地打开Otx。Levine表示,在自然界,“这个增强子是故意的”。“(结合)水平和特异性之间存在一个交易。”他指出,可能会被离群蛋白质分子激活的一触即发的开关,当其应该开启时却无法开启,将为生物体带来风险。

但细胞还有第二个策略,以确保增强子适当运行:将它们与目标基因紧密地“打包”在一起。3年前,马萨诸塞大学医学院生物学家Job Dekker等人报告称,有证据显示,增强子—基因连接并非无序分散的,而是出现在“拓扑结合网络”(TAD)中。他们预计,每个TAD包含少量基因和几十个增强子。

不过,这一理论面临诸多质疑,于是Dekker研究了CFTR基因。在囊胞性纤维症患者体内,这一基因会发生突变。在该团队研究的5种细胞类型中,编码一个离子通道的该基因,会与不同的增强子相互作用。在每种情况下,增强子和基因全被发现于染色体相同的延伸位置。

Dekker 等人表示,TAD可能是限制基因暴露给错误增强子引发的伪激活作用的方式之一,或者它们将有助于确保需要工作的基因同步工作。Levine指出,无论哪种方式,逐渐清晰的是,TAD“是基因组结构和功能的最基本单元”。

这仍留下了一个几何学问题:在一个TAD中,增强子和目标基因通常相距一定距离,那么它们是如何聚到一起的?答案似乎是,在TAD 内的DNA环路会将增强子和基因并置。例如,Dekker发现,5个被研究的细胞类型中有3个能激活CFTR,但是激活作用发生在不同时间和不同条件下,并且形成不同的环路将适当增强子带给基因。

另外,费城儿童医院生物学家Gerd Blobel也报告了其利用修饰基因—增强子环路治疗镰状细胞性贫血的进展。在这种疾病中,产生携带氧气的蛋白质络合物血红蛋白的一个亚组的基因存在缺陷,从而引发红细胞畸形。但身体内还有另一种仅在胎儿发育期活跃的血红蛋白。而数个治疗策略主要致力于提高胎儿血红蛋白的产生。

去年,Blobel研究组报告了他们通过更改名为LCR的增强子与成人血红蛋白基因相连接的环路,下调成人血红蛋白的产生和推动胎儿血红蛋白的增加。Blobel 解释道:“这不是传统的基因疗法和基因修正,而是编辑基因组的折叠方式。”

Blobel在会上表示,与激活胎儿血红蛋白的药物治疗相比,该疗法毒性较低。目前,该研究小组已经开始在携带人类球蛋白基因的转基因小鼠体内测试该方法。但要消除人们对增强子回路重要性的质疑,该研究还有很长的路要走。“我们已经花费数年时间试图证实环路真实存在。”宾夕法尼亚大学分子生物学家Kenneth Zaret说。

来源:中国科学报


相关内容

  • 科学家用基因工程与实验动物追溯人类进化
  • 发布时间:2015-07-23 06:45 来源:中国科学报 科学家将HARE5 增强子插入小鼠胚胎.(图片来源:J. LOMAX BOYD 等) 2006年,美国加州大学圣克鲁兹分校计算学家宣布,他们瞥见了让人类之所以为人的DNA.他们比较了脊椎动物的基因序列,并设计出一个包含约50个DNA区域的 ...

  • 启动子与增强子
  • 第三章 第二节 启动子与增强子 教学目标: 教学重.难点: 教学内容: 一.原核生物启动子 1 启动子:是一段位于结构基因 5 '端上游区的 DNA 序列,在转录起始之前被 RNA 聚合酶结合的 DNA 部位称为启动子:启动子的结构影响它与 RNA 聚合酶的亲和力,决定基因表达强度. 转录单元:是一 ...

  • 浙江省2015年高考语文考试说明
  • 浙江考试2015KAOSHISHUOMING 考试说明 语文 I .考试性质与对象 语文是普通高等学校招生全国统一考试的必考科目,语文高考是合格的高中毕业生和具有同等学 力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德.智.体全面衡量,择优 录取.因此,高考语文试题应具有较高的 ...

  • 十年过去了,离「生命编辑」这个宏大梦想越来越近
  • 最近十年,遗传学(包括基因组学)有哪些实质性的突破? Juntao Yu,Biosciences, Junior@USTC 呼,借此机会回顾一下最近看的和做的一些东西. 这十年 Genomics 的主要变化就是定量化和可编辑,这段时间基因组学的主要任务有以下三种是对基因组进行功能性的注释 (Func ...

  • 人的相貌是什么决定的
  • 人的相貌是什么决定的? 人的相貌源自父母,而女儿的相貌更像父亲,儿子的相貌更像母亲.但是,这也不能深入解释,一个人的相貌是如何形成的. 基因决定相貌 相貌主要指的是一个人的面部特征或脸部形态.既然相貌是父母给的,那就一定与遗传有关,因此可以说基因决定相貌,确切地说,是父母的基因决定一个人的相貌.但是 ...

  • CHO 细胞表达系统研究新进展
  • CHO 细胞表达系统研究新进展 申烨华 耿信笃3 (西北大学现代分离科学研究所, 陕西省现代分离科学重点实验室, 西安 710069) 摘要 中国仓鼠卵巢细胞(Chinese Hamster Ovary Cell ) 是目前重组糖基蛋白生产的首选体系.本 文综述近几年来该系统在生产基因工程药物方面的 ...

  • 分子生物学试题
  • 分子生物学试题 1.PCR的特点不包括 A. 只需微量模板 B. 只需数小时 C. 扩增产物量大 D. 底物必须标记 E. 变性.复性.延伸三个步骤循环进行 2.目前检测血清中乙肝病毒最敏感的方法是 A.斑点杂交试验 B.等位基因特异性寡核苷酸分子杂交 C.Southern印迹 D.PCR法 E.N ...

  • 第一章 基因的结构与功能 自测题
  • (一) 选择题 A型题 1. 关于基因的说法错误的是 A. 基因是贮存遗传信息的单位 B. 基因的一级结构信息存在于碱基序列中 C. 为蛋白质编码的结构基因中不包含翻译调控序列 D. 基因的基本结构单位是一磷酸核苷 E. 基因中存在调控转录和翻译的序列 2. 基因是指 A. 有功能的DNA片段 B. ...

  • 中科院复习题 基因工程原理
  • 中国科学院究生院 <基因工程原理>复习题(2) 1. 原核基因(Prokaryotic gene ):由原核生物(如大肠杆菌)基因组编码的基因,以及高等生物细胞器线粒体基因组和叶绿体基因组等编码的基因,统称原核基因. 2. 真核基因(Eukaryotic gene):真核生物基因组染色体 ...