构造函数证明不等式

构造函数证明:[2的平方/(2的平方-1)*3的平方/(3的平方-1)*...*n的平方/(n的平方-1)]>e的(4n-4)/6n+3)次方

不等式两边取自然对数(严格递增)有:

ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)

不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1)

=ln2-ln1+lnn-ln(n+1)=ln[n^2/(n+1)]

构造函数f(x)=ln[x^2/(x+1)]-(4x-4)/(6x+3)

对f(x)求导,有:f'(x)=[(x+2)/x(x+1)]+[1/(x+1/2)]^2

当x>2时,有f'(x)>0有f(x)在x>2时严格递增从而有

f(n)>=f(2)=ln(4/3)-4/15=0.02>0

即有ln[n^2/(n+1)]>(4n-4)/(6n+3)

原不等式等证

解:

∏{n^2/(n^2-1)}[n≥2] > e^((4n-4)/(6n+3))

∵n^2/(n^2-1)=n^2/(n+1)(n-1)

∴∏{n^2/(n^2-1)}[n≥2] = 2n/(n+1)

原式可化简为:2n/(n+1) > e^((4n-4)/6n+3))

构建函数:F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2

∵e^((4n-4)/(6n+3))

∴F’(n)>0 [n≥2]

而F[2]=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0

所以F(n)>0 [n≥2]

即:2n/(n+1) > e^((4n-4)/6n+3))

故得证。

一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式

例1 若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c<0.

求证:9b2>4ac.

证明 构造函数f(x),设f(x)=ax2+3bx+c(a≠0),

由f(2)=4a+6b+c>0,

f(-1)=a-3b+c<0,

根据勘根定理可知:f(x)在区间(-1,2)内必有零点.

又f(x)为二次函数,由勘根定理结合可知:

f(x)必有两个不同的零点.

令ax2+3bx+c=0可知△=(3b)2-4ac>0,

所以可得:9b2>4ac.命题得证.

评析 本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决.

二、结合构造函数的单调性证明不等式

例2 (20xx年人教A版《选修4-5不等式选讲》例题改编)已知a,b,c是实数,求证:

|a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.

证明 构造函数f(x),设f(x)=x1+x(x≥0).

由于f′(x)=1(1+x)2,所以结合导数知识可知f(x)在[0,+∞)上是增函数.

∵0≤|a+b+c|≤|a|+|b|+|c|,

∴f(|a+b+c|)≤f(|a|+|b|+|c|),

即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.命题得证.

三、结合构造函数在某个区间的最值证明不等式

例3 (第36届IMO试题)

设a,b,c为正实数,且满足abc=1,求证:

1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.

证明 构造函数,设f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),显然a=b=c=1时,f(a,b,c)=32≥32成立.

又abc=1,a,b,c为正实数,则a,b,c中必有一个不大于1,不妨设0f(a,b,c)-f(a,1,c)=(1-b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,

∴f(a,b,c)≥f(a,1,c),

因此要证f(a,b,c)≥32,只要证f(a,1,c)≥32,此时ac=1,

∴a,1,c成等比数列,令a=q-1,c=q(q>0).

f(a,1,c)=q31+q+qq2+1+1q2(1+q)

=q5+1q2(1+q)+qq2+1

=(q4+1)-(q3+q)+q2q2+qq2+1

=(q2+q-2)-(q+q-1)+1q+q-1+1

=t2-t+1t-1.(其中t=q+q-1,且t≥2).

由导数知识(方法同例2、例3)可知函数

f(a,1,c)=t2-t+1t-1(t≥2)是增函数,

当且仅当t=2q=1a=c=1时,

(f(a,1,c))min=22-2+12-1=32成立,

∴f(a,1,c)≥32.

故f(a,b,c)≥f(a,1,c)≥32.命题得证。

构造函数证明:[2的平方/(2的平方-1)*3的平方/(3的平方-1)*...*n的平方/(n的平方-1)]>e的(4n-4)/6n+3)次方

不等式两边取自然对数(严格递增)有:

ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)

不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1)

=ln2-ln1+lnn-ln(n+1)=ln[n^2/(n+1)]

构造函数f(x)=ln[x^2/(x+1)]-(4x-4)/(6x+3)

对f(x)求导,有:f'(x)=[(x+2)/x(x+1)]+[1/(x+1/2)]^2

当x>2时,有f'(x)>0有f(x)在x>2时严格递增从而有

f(n)>=f(2)=ln(4/3)-4/15=0.02>0

即有ln[n^2/(n+1)]>(4n-4)/(6n+3)

原不等式等证

解:

∏{n^2/(n^2-1)}[n≥2] > e^((4n-4)/(6n+3))

∵n^2/(n^2-1)=n^2/(n+1)(n-1)

∴∏{n^2/(n^2-1)}[n≥2] = 2n/(n+1)

原式可化简为:2n/(n+1) > e^((4n-4)/6n+3))

构建函数:F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2

∵e^((4n-4)/(6n+3))

∴F’(n)>0 [n≥2]

而F[2]=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0

所以F(n)>0 [n≥2]

即:2n/(n+1) > e^((4n-4)/6n+3))

故得证。

一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式

例1 若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c<0.

求证:9b2>4ac.

证明 构造函数f(x),设f(x)=ax2+3bx+c(a≠0),

由f(2)=4a+6b+c>0,

f(-1)=a-3b+c<0,

根据勘根定理可知:f(x)在区间(-1,2)内必有零点.

又f(x)为二次函数,由勘根定理结合可知:

f(x)必有两个不同的零点.

令ax2+3bx+c=0可知△=(3b)2-4ac>0,

所以可得:9b2>4ac.命题得证.

评析 本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决.

二、结合构造函数的单调性证明不等式

例2 (20xx年人教A版《选修4-5不等式选讲》例题改编)已知a,b,c是实数,求证:

|a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.

证明 构造函数f(x),设f(x)=x1+x(x≥0).

由于f′(x)=1(1+x)2,所以结合导数知识可知f(x)在[0,+∞)上是增函数.

∵0≤|a+b+c|≤|a|+|b|+|c|,

∴f(|a+b+c|)≤f(|a|+|b|+|c|),

即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.命题得证.

三、结合构造函数在某个区间的最值证明不等式

例3 (第36届IMO试题)

设a,b,c为正实数,且满足abc=1,求证:

1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.

证明 构造函数,设f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),显然a=b=c=1时,f(a,b,c)=32≥32成立.

又abc=1,a,b,c为正实数,则a,b,c中必有一个不大于1,不妨设0f(a,b,c)-f(a,1,c)=(1-b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,

∴f(a,b,c)≥f(a,1,c),

因此要证f(a,b,c)≥32,只要证f(a,1,c)≥32,此时ac=1,

∴a,1,c成等比数列,令a=q-1,c=q(q>0).

f(a,1,c)=q31+q+qq2+1+1q2(1+q)

=q5+1q2(1+q)+qq2+1

=(q4+1)-(q3+q)+q2q2+qq2+1

=(q2+q-2)-(q+q-1)+1q+q-1+1

=t2-t+1t-1.(其中t=q+q-1,且t≥2).

由导数知识(方法同例2、例3)可知函数

f(a,1,c)=t2-t+1t-1(t≥2)是增函数,

当且仅当t=2q=1a=c=1时,

(f(a,1,c))min=22-2+12-1=32成立,

∴f(a,1,c)≥32.

故f(a,b,c)≥f(a,1,c)≥32.命题得证。


相关内容

  • 关于辅助函数法与高等数学解题关系的探讨
  • 福建农林大学学报(自然科学版) JournalofFuilanAgricultureandForestryUniversioy(NaturalScienceEdition)第32卷第4期2003年12月关于辅助函数法与高等数学解题关系的探讨 陈绩馨 (福建农林大学计算机与信息学院,福建福州35000 ...

  • 构造函数解导数
  • 合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键. 例1:已知函数f (x )=ln (ax +1)+x 3-x 2-ax . (1) 若 2 为y =f (x )的极值点,求实数a 的值: ...

  • 构造函数法证明不等式的常见方法
  • 构造函数法证明不等式 一.教学目标: 1. 知识与技能:利用导数研究函数的单调性极值和最值,再由单调性和最值来证明不等式. 2. 过程与方法:引导学生钻研教材,归纳求导的四则运算法则的应用,通过类比,化归思想转换命题,抓住条件与结论的结构形式,合理构造函数. 3. 情感与态度:通过这部分内容的学习, ...

  • 难点二 导数与不等式相结合的问题
  • 导数是高中数学选修板块中重要的部分,应用广泛,教材中重点介绍了利用导数求切线.判断单调性.求极值.最值等基础知识,但是高考数学是以能力立意,所以往往以数列.方程.不等式为背景,综合考察学生转化和化归.分类讨论.数形结合等数学思想的应用能力,面对这种类型的题目,考生会有茫然,无所适从的感觉,究其原因是 ...

  • 函数法证明不等式
  • 已知函数f(x)=x-sinx,数列{an}满足0 <1> 证明 0 <2>证明an+1<(1/6)×(an)^3 它提示是构造一个函数然后做差求导,确定单调性。可是还是一点思路都没有,各位能不能给出具体一点的解答过程啊? (1)f(x)=x-sinx,f'(x)=1- ...

  • 构造法证明不等式
  • 由于证明不等式没有固定的模式,证法灵活多样,技巧性强,使得不等式证明成为中学数学的难点之一.下面通过数例介绍构造法在证明不等式中的应用. 一、构造一次函数法证明不等式 有些不等式可以和一次函数建立直接联系,通过构造一次函数式,利用一次函数的有关特性,完成不等式的证明. 例1 设0≤a、b、c≤2,求 ...

  • 裂项放缩法与函数放缩法研究
  • 数学讲座:裂项放缩法与函数放缩法研究 一.研究意义 1. 近年来广东高考不等式综合题,尤其是函数.数列与不等式的综合,有加强的趋势 2. 两种方法技巧性不算强,但思维含量高,思想方法含量高,而且在课本有迹可循,符合广东高考命题者的口味.其中,函数放缩法充分体现函数思想方法. 选修2-2 P32 B组 ...

  • 不等式的几种证明方法及简单应用
  • 本科毕业论文 不等式的几种证明方法及简单应用 姓 名 院 系 专 业 班 级 学 号 指导教师 答辩日期 成 绩 数学与计算机科学学院 数学与应用数学 不等式的几种证明方法及简单应用 摘 要 我们在数学的学习过程中, 不等式很重要. 其中不等式的证明方法在不 等式基础理论中非常重要. 文中总结了部分 ...

  • 构造分式函数,利用分式函数的单调性证明不等式
  • 设f(x)在[0,1]上连续,且∫f(x)dx=0,∫xf(x)dx=1(两个积分都是在0-1上的积分),求证存在一点X∈[0,1]使∣f(x)∣>4 反证法 证明: ∵∫f(x)dx=0,∫xf(x)dx=1 ∴∫[x-(1/2)]f(x)dx=∫xf(x)dx-(1/2)∫f(x)dx=1 ...