怎样证明面面垂直

如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)

为方便,下面#后的代表向量。

#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.

对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD

两组对边平方和分别为:

AB2+CD2=AB2+(#BD-#BC)2=AB2+BD2+BC2-2#BD·#BC

AD2+BC2=(#BD-#BA)2+BC2=BD2+BA2+BC2-2#BD·#BA

则AB2+CD2=AD2+BC2等价于#BD·#BC=#BD·#BA等价于#AC·#BD=0

所以原命题成立,空间四边形对角线垂直的充要条件是两组对边的平方和相等

证明一个面上的一条线垂直另一个面;首先可以转化成

一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面

然后转化成

一条直线垂直于另一个平面内的两条相交直线

也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2

一、初中部分

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)

1向量法 两条直线的方向向量数量积为0

2斜率 两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。

如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)

为方便,下面#后的代表向量。

#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.

对角线的点积:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD

两组对边平方和分别为:

AB2+CD2=AB2+(#BD-#BC)2=AB2+BD2+BC2-2#BD·#BC

AD2+BC2=(#BD-#BA)2+BC2=BD2+BA2+BC2-2#BD·#BA

则AB2+CD2=AD2+BC2等价于#BD·#BC=#BD·#BA等价于#AC·#BD=0

所以原命题成立,空间四边形对角线垂直的充要条件是两组对边的平方和相等

证明一个面上的一条线垂直另一个面;首先可以转化成

一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面

然后转化成

一条直线垂直于另一个平面内的两条相交直线

也可以运用两个面的法向量互相垂直。

这是解析几何的方法。

2

一、初中部分

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)

1向量法 两条直线的方向向量数量积为0

2斜率 两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理 在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理 如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。


相关内容

  • 怎样证明面面平行
  • 线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 面面 ...

  • 怎样证明两直线平行
  • “两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。 一、怎样证明两直线平行 证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理 ...

  • 优秀教案17-直线与平面垂直的性质
  • 2.3.3 直线与平面垂直的性质 教材分析 本节内容是数学必修2第二章 点.直线.平面之间的位置关系 直线.平面垂直的判定及其性质 的第三课时.本节课是在学习了直线.平面的位置关系及相关定理后进行的,是对前面学习内容的延续与深入,也是空间中线线垂直.面面垂直关系的一个交汇点.空间中直线与平面垂直的性 ...

  • 怎样证明弦切角
  • 设圆心为O,连接OC,OB,OA。过点A作TP的平行线交BC于D, 则∠TCB=∠CDA ∵∠TCB=90-∠OCD ∵∠BOC=180-2∠OCD ∴,∠BOC=2∠TCB(弦切角的度数等于它所夹的弧的圆心角的度数的一半) ∵∠BOC=2∠CAB ∴∠TCB=∠CAB(弦切角的度数等于它所夹的弧的 ...

  • 高考几何证明题
  • 输入内容已经达到长度限制 ∠B=2∠DCN 证明: ∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°; 又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN; ∵AB//DE,∴∠B=∠BCD; 于是∠B=2∠DCN. 11 输入内容已经达到长度限制 ∠B=2∠DCN 证明: ∵CN⊥CM,∴

  • 2017圆的轴对称性(2) 浙教版.doc
  • 3.2 圆的轴对称性(2) 教学目标: 1.经历探索垂径定理的逆定理的过程: 2.掌握定理"平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧"及定理 "平分弧的直径平分弧所对的弦". 3.会运用垂径定理的逆定理解决一些简单的几何问题. 教学重难点: 重点: ...

  • 轴对称全章教案
  • §14.1.1 轴对称(一) 教学目标 (一)教学知识点:在生活实例中认识轴对称图:分析轴对称图形,理解其概念. (二)能力训练要求 1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴. 2.经历观察.分析的过程,训练学生观察.分析的能力. (三)情感与价值观要求 通过对丰富的轴对 ...

  • "面面平行判定定理"教学的新构思
  • 作者:贺安生刘祥民 中学数学教学参考 1999年02期 一.教学目标 1.认知目标 引导学生在"线线平行"或"线面平行"的知识基础上"同化"和"索引"出"面面平行"的判定定理及其变式,并能运用它们解决 ...

  • 三角形全等的判定4教案
  • 首都师范大学附属实验学校教案 课题 授课 时间 教材 与学 生情 况分 析 三角形全等的判定 4 授课年级 八年级 课型 习题课 课时 1 本学期累计课时 5 9.6 授课 人 学生已学习了全等三角形的定义.性质,对全等三角形的判定方法有了一定的了解,这为过渡 到本节的深入学习起着铺垫作用.本节内容 ...