中性点接地和中性点不接地的区别

中性点接地和中性点不接地的区别

电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。

1、中性点不接地(绝缘)的三相系统

各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。

在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h 。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A 时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。

2、中性点经消弧线圈接地的三相系统

上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV 系统大于10A ,10kV 系统大于30A 时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地的方式。目前在35kV 电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。

消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的电感电流,这个滞后电压90°的电感电流与超前电压90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至等于零,从而消除了接地处的电弧以及由它可能产生的危害。消弧线圈的名称也是这么得来的。当电容电流等于电感电流的时候称为全补偿;当电容电流大于电感电流的时候称为欠补偿;当电容电流小于电感的电流的时候称为过补偿。一般都采用过补偿,这样消弧线圈有一定的裕度,不至于发生谐振而产生过电压。

3、中性点直接接地

中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV 以上系统大都采用中性点直接接地。

对于不通等级的电力系统中性点接地方式也不一样,一般按下述原则选择:220kV 以上电力网,采用中性点直接接地方式;110kV 接地网,大都采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV 的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A 时,可采用经消弧线圈接地的方式;3~10kV 电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方式。但当电网

电容电流大于30A 时,可采用经消弧线圈接地或经电阻接地的方式;1kV 以下,即220/380V三相四线制低压电力网,从安全观点出发,均采用中性点直接接地的方式,这样可以防止一相接地时换线超过250V 的危险(对地)电压。特殊场所,如爆炸危险场所或矿下,也有采用中性点不接地的。这时一相或中性点应有击穿熔断器,以防止高压窜入低压所引起的危险。

4、中性点接地的优越性

在220/380V三相四线制低压配电网络中,配电变压器的中性点大都实行工作接地。这主要是因为这样做具有下述优越性:一是正常供电情况下能维持相线的对地电压不变,从而可向外(对负载) 提供220/380V这两种不同的电压,以满足单相220V (如电灯、电热)及三相380V (如电动机)不同的用电需要。二是若中性点不接地,则当发生单相接地的情况时,另外两相的对地电压便升高为相电压的几倍。中性点接地后,另两相的对地电压便仍为相电压。这样,即能减小人体的接触电压,同时还可适当降低对电气设备的绝缘要求,有利于制造及降低造价。三是可以避免高压电窜到低压侧的危险。实行上述接地后,万一高低压线圈间绝缘损坏而引起严重漏电甚至短路时,高压电便可经该接地装置构成闭合回路,使上一级保护动作跳闸而切断电源,从而可以避免低压侧工作人员遭受高压电的伤害或造成设备损坏。所以,低压电网的配电中性点一般都要实行直接接地。

中性点有电源中性点与负载中性点之分。它是在三相电源或负载按Y 型联接时才出现。对电源而言,凡三相线圈的首端或尾端连接在一起的共同连接点,称电源中性点,简称中点;而由电源中性点引出的导线便称中性线,简称中线,常用N 表示。三相四线制中性点不接地系统和三相四线制中性点接地系统。

一般情况下,当中性点接地时,则称为零线;若不接地时,则称为中线。

配电系统的三点共同接地。为防止电网遭受过电压的危害,通常将变压器的中性点,变压器的外壳,以及避雷器的接地引下线共同于一个接地装置相连接,又称三点共同接地。这样可以保障变压器的安全运行。当遭受雷击时,避雷器动作,变压器外壳上只剩下避雷器的残压,减少了接地体上的那部分电压。

中性点接地和中性点不接地的区别

电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。

1、中性点不接地(绝缘)的三相系统

各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。

在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h 。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A 时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。

2、中性点经消弧线圈接地的三相系统

上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV 系统大于10A ,10kV 系统大于30A 时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地的方式。目前在35kV 电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。

消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的电感电流,这个滞后电压90°的电感电流与超前电压90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至等于零,从而消除了接地处的电弧以及由它可能产生的危害。消弧线圈的名称也是这么得来的。当电容电流等于电感电流的时候称为全补偿;当电容电流大于电感电流的时候称为欠补偿;当电容电流小于电感的电流的时候称为过补偿。一般都采用过补偿,这样消弧线圈有一定的裕度,不至于发生谐振而产生过电压。

3、中性点直接接地

中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV 以上系统大都采用中性点直接接地。

对于不通等级的电力系统中性点接地方式也不一样,一般按下述原则选择:220kV 以上电力网,采用中性点直接接地方式;110kV 接地网,大都采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV 的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A 时,可采用经消弧线圈接地的方式;3~10kV 电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方式。但当电网

电容电流大于30A 时,可采用经消弧线圈接地或经电阻接地的方式;1kV 以下,即220/380V三相四线制低压电力网,从安全观点出发,均采用中性点直接接地的方式,这样可以防止一相接地时换线超过250V 的危险(对地)电压。特殊场所,如爆炸危险场所或矿下,也有采用中性点不接地的。这时一相或中性点应有击穿熔断器,以防止高压窜入低压所引起的危险。

4、中性点接地的优越性

在220/380V三相四线制低压配电网络中,配电变压器的中性点大都实行工作接地。这主要是因为这样做具有下述优越性:一是正常供电情况下能维持相线的对地电压不变,从而可向外(对负载) 提供220/380V这两种不同的电压,以满足单相220V (如电灯、电热)及三相380V (如电动机)不同的用电需要。二是若中性点不接地,则当发生单相接地的情况时,另外两相的对地电压便升高为相电压的几倍。中性点接地后,另两相的对地电压便仍为相电压。这样,即能减小人体的接触电压,同时还可适当降低对电气设备的绝缘要求,有利于制造及降低造价。三是可以避免高压电窜到低压侧的危险。实行上述接地后,万一高低压线圈间绝缘损坏而引起严重漏电甚至短路时,高压电便可经该接地装置构成闭合回路,使上一级保护动作跳闸而切断电源,从而可以避免低压侧工作人员遭受高压电的伤害或造成设备损坏。所以,低压电网的配电中性点一般都要实行直接接地。

中性点有电源中性点与负载中性点之分。它是在三相电源或负载按Y 型联接时才出现。对电源而言,凡三相线圈的首端或尾端连接在一起的共同连接点,称电源中性点,简称中点;而由电源中性点引出的导线便称中性线,简称中线,常用N 表示。三相四线制中性点不接地系统和三相四线制中性点接地系统。

一般情况下,当中性点接地时,则称为零线;若不接地时,则称为中线。

配电系统的三点共同接地。为防止电网遭受过电压的危害,通常将变压器的中性点,变压器的外壳,以及避雷器的接地引下线共同于一个接地装置相连接,又称三点共同接地。这样可以保障变压器的安全运行。当遭受雷击时,避雷器动作,变压器外壳上只剩下避雷器的残压,减少了接地体上的那部分电压。


相关内容

  • 浅谈保护接地与保护接零的区别
  • 浅谈保护接地与保护接零的区别 摘要在低压电气设备外壳,采用保护接地和保护接零都是防止触电事故的安全措施.但是,在不同电压系统中采用何种接地方式是有区别的.本文分别从以下几个方面对此地进行阐述. 关键词保护接地保护接零应用范围具体要求 在此,有必要说明一点:以保护人身安全为目的,把电气设备不带电的金属 ...

  • 什么是接地保护,什么是接零保护,接地保护和接零保护的区别是什么?
  • 低压配电系统TN.TT.IT 的比较16930 电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN-S系统.TN-C系统.TN-C-S系统.(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由 ...

  • 变压器中性点接地的作用,零线和地线的接地区别 一篇文章全搞懂
  • 相线.中性线和火线.零线 在任何一个电路中,电路不工作时,线上有电压(俗称带电)的线,叫做相线,线上无电压的线,叫做中性线. 在单相电路中,为了更形象.更好理解,为相线和中性线又分别起了两个别名,叫做火线和零线.因此,相线=火线,零线=中性线. 相线很好理解,发电厂出来,电能输出,就是靠相线.在三相 ...

  • 中性线和接地线的区别
  • 中性线和接地线的区别 为了确保低压配电系统及电气设备.用电器具的安全使用,必须采取适当措施,防止使用人员发生电击危险及电气设备.用电器具烧毁.接地是常用的一种方法,因为大地是可导电的地层,其任何一点的电位通常取零,即零电位(当单相接地时,离接地点20m及以外视为零电位). 对电气设备.用电器具而言, ...

  • 中性线(零线)接地与不接地的区别
  • 大家知道,工业生产用电是三相380V的,其中有一条中性线是从发电机的中性点引出来,此中性点接到地上,称为"零线" 常用的电力系统分为两种,一种是中性点接地,一种是中性点不接地.至于中性点要不要接地,这取决于技术上和安全上的要求,它们各有不同的特点.下面就简单介绍一下这两种供电系统 ...

  • 火线.零线与地线
  • 火线.零线与地线的区别 零线是我国的习惯性说法,国外没有零线的说法,电气中有三种线:L(相线=火线).N(中性线).PE(保护线),其中L和N是带电的,PE是不带电导体. 一般情况下,三相电路中火线使用红.黄.蓝三种颜色表示三根火线,零线使用黑色.单相照明电路中,一般黄色表示火线.蓝色是零线.黄绿相 ...

  • PE线和N线区别
  • PE线 目录[隐藏] 概述 PE线和N线 [] 概述 PE线,英文全称protecting earthing,简体中文名称称之为[保护导体],也就是我们通常所说的[地线] PE线是专门用于将电气装置外露导电部分接地的导体,至于是直接连接至与电源点工作接地无关的接地极上(TT)还是通过电源中性点接地( ...

  • 三相电源与单相电源的区别
  • 三相电源与单相电源的区别 三相交流电是电能的一种输送形式,简称为三相电.三相交流电源,是由三个频率相同.振幅相等.相位依次互差120°的交流电势组成的电源.三相交流电的用途很多,工业中大部分的交流用电设备,例如电动机,都采用三相交流电,也就是经常提到的三相四线制.而在日常生活中,多使用单相电源,也称 ...

  • 单相.二相.三相电机的区别
  • 单相是220伏电压.相线对零线间的电压.两相的是相线的a和b或c,之间的相电压是380,常见的用电器是380的电焊机.三相的是a.b.c之间的380v的相间电压.用电器是三相电380v的电机或设备.整将交流电变成直流电.电机电容不能代替励磁机.励磁机是定子线圈,和转子线圈同时送电才能转的有碳刷可调速 ...